

FAX: (206) 695-3731

HICKEY MARINE ENTERPRISES

DATE: 9-17-93

TO: Mr. Dick Gable - Mr. At Collingt

FAX: (503) 289-2272

FROM: Greg Speyer

PAGES: 2

(including this page)

please find soundings performed upon completion of dodging 9-14-93. If you have any questions please call.

Live Zougar

SOWNDINGS PERFORMED UPON COMPLETION OF DREDGING 9-14-93.

All ELEVATIONS ARE COLUMBIA RIVER DATUM.

FLOW

- 27

-27

-27⁵

-27

-27

-28

- **28** - 28

- **2\$** ^S

85 -

-29

-29

-265

-27

-27

-27

-26.5

- 26

-26

Sediment Data Report

Ash Grove Cement Company Willamette River Portland, Oregon

September 19, 2005

į

Prepared for:
Ash Grove Cement Company

Prepared By: Parsons Brinckerhoff

in association with Integral Consulting, Inc.

Table of Contents

1. INTRODUCTION	1
2. SAMPLE COLLECTION AND PROCESSING	2
2.1 Field Operations and Equipment	2
2.1.1 Coring Vessel	2
2.1.2 Navigation and Positioning	3
2.1.3 Core Collection Technique	3
2.1.4 Decontamination	
2.1.5 Field Log	4
2.2 Sample Compositing and Subsampling	5
2.3 Sample Transport	6
2.4 Chain-of-Custody Procedures	6
3. LABORATORY PHYSICAL AND CHEMICAL SEDIMENT ANALYSIS	8
3.1 Data Quality Summary	8
3.2 Laboratory Results	9
4. CONCLUSIONS	11
5. REFERENCES	12

List of Tables

Table 1 Sediment core information

List of Figures

Figure 1 Site location map

Figure 2 Proposed dredging plan and sediment sampling locations

Figure 3 Typical cross sections

Appendices

Appendix A Core Information Forms and Logs

Appendix B Laboratory Report

Appendix C QA1 Checklists

Appendix D Summary of Sediment Physical and Chemical Results

ii

1. INTRODUCTION

Ash Grove Cement Company operates a lime plant located at 13939 N. Rivergate Bvld. in North Portland, Oregon. The Rivergate Lime Plant imports limestone at its dock and barge berth, which is located on the east shore of the Willamette River, River Mile 2.9, as shown in the vicinity map, Figure 1. Ash Grove Cement Company has submitted a permit application for maintenance dredging to maintain safe access and berthing conditions at the facility. Sediment characterization was conducted to support regulatory agency review regarding water quality during dredging as well as the newly exposed sediment surface after completion of dredging.

As shown in Figure 2, the proposed maintenance dredging is near the conveyor system and at the upstream and downstream ends of the berth. Dredging will be by clamshell to haul barge, with ultimate disposal at an approved upland site. The dredged material is expected to be Willamette River sands and silts in the downstream and upstream portions of the berth. The material to be dredged in the vicinity of the conveyor system was found to be limestone based on grab samples collected at three locations within the footprint of the conical mound of material. Ash Grove Cement Company has already implemented several Best Management Practices (BMPs) to eliminate to the extent practicable future loss of limestone. BMPs in place include operating procedures involving conveyor stoppage as well as equipment modifications, such as a new conveyor brake system and motor control synchronization, to eliminate spillage at transitions between conveyors.

Dredging at this time is anticipated to be less than 2,500 cy in accordance with the dredging permit application previously submitted to the U.S. Army Corps of Engineers. The maximum proposed dredge depth at this time will be -27 ft CRD, which includes a one foot overdepth allowance to account for uncertainty in dredging accuracy. Total estimated dredging volume (including one foot of allowable overdepth beyond the design depth of -26 ft CRD) is about 2,000 cubic yards (cy) based on June 1, 2004 and February 17, 2005 hydrographic survey data collected by Minister & Glaeser Surveying, Inc. Of this dredge volume, approximately 630 cy is located near the conveyor in the middle of the berth, 1,300 cy is located at the downstream end of the berth and 70 cy is at the upstream end of the berth. The deepest portion of the dredge cuts are approximately 10 feet at the downstream end of the berth and near the conveyor as shown in Figure 3. At the upstream end the deepest part of the dredge cut is approximately 3 feet.

This report documents the methods and results for sediment sampling at the barge berth conducted in June. 2005.

1

2. SAMPLE COLLECTION AND PROCESSING

2.1 Field Operations and Equipment

Sediment sampling took place on June 1, 2005 between approximately 9:00 am and 1 pm. Core samples were collected at locations C1, C2A and C3 as shown in Figure 2. Coordinates of the sample locations, mudline elevations, etc. are shown in Table 1. Samples were collected to a depth of at least one foot below the maximum proposed dredging depth (or the maximum depth of refusal) as required in the Sampling and Analysis Plan (SAP) (Parsons Brinckerhoff, 2005).

Cores C1 and C3 were located within 13 ft and 9 ft of the proposed locations, respectively. The sample location for C2A was moved to the west of the proposed location since the presence of limestone prevented penetration of the vibra-corer at the proposed C2A location. The intent of the core sample at C2A was to document the post dredge sediment surface following removal of the mound of limestone. Coring within the footprint of the limestone was not possible. Therefore, the original location for C2A, which was over the mound footprint, was moved slightly beyond the toe of the mound to allow a core sample to be obtained.

2.1.1 CORING VESSEL

Cores were collected using a vibracorer operated by Golder Associates, Inc. aboard the vessel *OR 166 TN* operated by Mr. John Vlastelicia. The *OR 166 TN* is a welded aluminum 29-footlong by 10 ft wide research vessel with an inboard outdrive and a 275-horsepower engine. It is equipped with a hydraulically operated A-frame with a boom, and a 1,000-lb capacity hydraulic winch. The vessel drafts approximately 3 feet and can easily accommodate up to 12 foot core tubes.

2.1.2 NAVIGATION AND POSITIONING

Station positioning was accomplished using a Differential Global Positioning System (DGPS). DGPS consists of a GPS receiver on the sampling vessel and a differential receiver located at a horizontal control point. At the control point, the GPS-derived position was compared with the known horizontal location, offsets or biases were calculated, and the correction factors were telemetered to the GPS receiver located on the sampling vessel. Positioning information such as range and bearing from the target sampling location were provided to guide the sampling platform's pilot to the desired location.

A positional fix was recorded when the corer impacted the mudline. Accuracies of ±3 meters are achieved using DGPS. Vertical control was based on the USGS gage No. 14211820 in Columbia Slough approximately 2 miles north of the project site. Tide board measurements were recorded at Port of Portland's Terminal 4 before and after sediment sampling. Based on a comparison of the measurements at Terminal 4 and the Columbia Slough gage, the time series of river stages measured in Columbia Slough were corrected by a reduction of 0.3 feet. All

depth measurements were corrected to Columbia River Datum (CRD). Horizontal coordinates were referenced to Oregon Coordinate System, North Zone, North American Datum 1983(91) in international feet.

2.1.3 CORE COLLECTION TECHNIQUES

Samples were collected using a vibracorer. The vibracorer uses a hydraulic system that vibrates and drives a length of 4-inch outer diameter (O.D.) aluminum tubing into the sediment. Ten and 12 foot long core tubes were used and these were typically driven to full depth. A continuous sediment sample was retained in the tubing with the aid of a stainless steel core cutter/catcher. Sediment recoveries of approximately 70% to 80% were obtained corresponding to recovered core lengths of 7 feet 10 inches for the ten foot core tubes and 10 feet 10 inches for the 12 foot core tubes. Core liners were not used in the corer. A label identifying the station was securely attached to the outside of the casing and wrapped with transparent tape to prevent loss or damage of the label. The core ends were covered with aluminum foil, a protective cap, and duct tape to prevent leakage. The core sections were stored upright in a container chilled with ice to approximately 4°C. Empty tubing was removed to assure that each section was full of sediment. Full tubes limit disturbance during storage and transport.

As the end if the sampling day, cores were transported to the onshore sample processing facility at the Olympia office of Integral Consulting, Inc. for compositing and subsampling. Cores remained in the custody of field sampling personnel during transit between the vessel and the processing location.

2.1.4 DECONTAMINATION

All sampling equipment that contacted sediment samples (i.e., core tubes, stainless steel bowls, utensils, and core catcher) was decontaminated prior to use and between each core sample. The decontamination procedure consisted of the following sequential rinses:

- Rinse with tap water or water supplied by the sampling vessel
- Scrub with laboratory-grade detergent (i.e., Alconox) solution
- Tap water rinse
- Distilled water rinse
- Rinse with dilute (0.1 Normal) nitric acid
- Distilled water rinse
- Rinse with methanol

All decontaminated equipment was wrapped in aluminum foil with the dull side facing the equipment. All waste decontamination water was diluted with site water and discarded onsite.

New aluminum core tubes were scrubbed with Alconox, rinsed, and wrapped immediately in aluminum foil to reduce the chance of contamination. Sufficient decontaminated sampling tubes were available on-site to allow for uninterrupted operations.

Samplers were disposable latex gloves during sample processing (i.e., core extrusion and splitting, compositing, and filling sample containers). The gloves were rinsed with distilled water before and after handling each sample to help minimize sample contamination from chemicals associated with latex gloves. Gloves were disposed of between composites to prevent cross contamination between each core.

2.1.5 FIELD LOG

A field log was maintained during all field sampling activities. This log included the following:

- Names of field supervisor and person(s) collecting and logging in the sample
- Weather conditions
- Elevation of each boring station sampled relative to CRD. This was accomplished using a lead line to determine depth at the location and time each sample was collected and referencing this information to published river elevation data.
- Date and time of collection of each sediment bore sample
- The sample station number as shown in Table 1 and Figure 2, and individual designation numbers assigned for each individual core
- Length and depth intervals of each core and recovery for each sediment sample as measured from CRD
- Qualitative notation of apparent resistance of sediment column to coring
- Odor
- Any deviations from the approved sampling plan

2.2 Sample Compositing and Subsampling

Core extrusion and sample processing were done at Integral's onshore sample processing facility in Olympia, Washington on June 2, 2005, one day following field collection. At the facility, cores were accessed by cutting off one side off the core tube. This produces a generally intact core segment for visual description of the sediments with depth.

<u>Core and Sample Descriptions</u>. A description of each core sample was recorded on Core Description and Sample Information forms. These forms include the following information:

- Sample recovery
- Physical soil description (i.e., soil type, density/consistency, color)
- Odor (e.g., hydrogen sulfide, petroleum)

- Visual stratification and lenses.
- Vegetation
- Debris
- Evidence of biological activity (e.g., detritus, shells, tubes, bioturbation, live or dead organisms)
- Presence of oil sheen
- Other distinguishing characteristics or features

<u>Compositing and Subsampling</u>. Following discrete sample collection and sediment descriptions, samples were composited in accordance with the SAP as follows:

- The top 0.8 feet of sediment in core C2A was composited to characterize the postdredge surface.
- The sediment lying between the mudline and the maximum depth of dredging for Cores C1 and C3 were composited vertically and across both cores. This composite was designated as C13-A and is used to assess sediment quality of the dredged material to be removed. As noted in the introduction, the material in the conical mound located at the conveyor (Figure 2) was shown to be crushed limestone approximately two to three inches in size. This was documented by collection of three grab samples. Although the sampler did not close during collection of two of the three samples (the limestone caught in the lip of the bucket), the bucket did close once revealing an extremely clean sample with only a trace of material smaller than the rock. Therefore, no further collection or assessment of this material was undertaken. Based on the field sampling, the material to be dredged at this location is assumed to consist of crushed limestone.
- For Cores C1 and C3 the sediment lying within one foot below the deepest proposed dredge depth was composited vertically. These samples were used to characterize the post dredge surface. The post-dredge surface samples from Cores C1, C2A and C3, designated as samples C1-Z, C2-Z and C3-Z in Table 1, were composited across the three cores and used to characterize the post-dredge surface sediment quality. This horizontally composited sample was designated as C123-Z and is used to assess sediment quality of the post-dredge surface.

Details on specific core retention dimensions and portions of the core used to create sample composites are shown in the Core Logs contained in Appendix A.

Sediment was collected from the entire length of the portion of the core representing the composite. Sediments were placed in a decontaminated stainless steel bowl and thoroughly mixed to a uniform color and texture. The sediments were stirred periodically during collection of individual samples to ensure that the mixture remained homogenous. Pre-labeled jars for chemical and conventional parameter analyses were filled with the homogenized sediment. In

total, approximately 32 oz. of homogenized sediment were collected for each composite sample to provide adequate volume for all analyses. Aliquots of each composite sample were placed in appropriate containers obtained from the chemical laboratory. Each sample container was clearly labeled with the project name, sample/composite identification, type of analysis to be performed, date and time, and initials of person(s) preparing the sample. Samples were stored on ice or refrigerated at approximately 4°C until analysis.

2.3 Sample Transport

When compositing and subsampling was completed, sediment sample containers were transported to the analytical laboratory. The following specific sample shipping and delivery procedures were used:

- Individual sample containers were placed in sealed plastic bags, packed to prevent breakage, and transported on ice in a sealed cooler.
- Ice was contained in a separate plastic bag in the cooler.
- The shipping containers were clearly labeled with sufficient information (name of project, time and date container was sealed, person sealing the container and consultant's office name and address) to enable positive identification.
- A sealed envelope containing chain-of-custody forms was enclosed in a plastic bag and taped to the inside lid of the cooler.
- Signed and dated chain-of-custody seals were placed in the cooler prior to shipping.
- The cooler containing sediment samples for analysis was delivered to the laboratory within 2 hours of being sealed.
- Samples were packaged and shipped in accordance with U.S. Department of Transportation regulations as specified in 49 CFR 173.6 and 49 CFR 173.24.

2.4 Chain-of-Custody Procedures

Chain-of-custody procedures tracked delivery of samples from the vessel to the processing facility and from the processing facility to the analytical laboratory. Specific procedures were as follows:

- Information tracked by the chain-of-custody records included core segment and sample identification, date and time of sample collection and receipt, analyses and analytical methods required, and signatures of each person in custody of the samples.
- The coolers were clearly labeled with sufficient information (name of project, time and date container was sealed, person sealing the cooler and company name and address) to enable positive identification.
- The envelope containing signed and dated chain-of-custody forms was enclosed in a plastic bag and taped to the inside lid of the cooler prior to shipping.

Upon transfer of sample possession to the analytical laboratory, the chain-of-custody form was signed by the person transferring custody of the sample container. Upon receipt of samples at the laboratory, the shipping container was opened and the condition of the samples was recorded by the receiver. The laboratory maintained chain-of-custody internally to track handling and final disposition of all samples.

3. LABORATORY PHYSICAL AND CHEMICAL SEDIMENT ANALYSIS

The laboratory report presenting the methods, results, and QC analyses are provided in Appendix B. Integral performed a data quality evaluation (QA1) for DMEF chemicals of concern. This section details the outcome of the data quality review, summarizes the sediment chemical data, and compares the chemical data to DMEF chemical quidelines.

3.1 Data Quality Summary

Integral Consulting, Inc. performed the following quality evaluation for DMEF chemicals of concern.

A data quality evaluation was performed in accordance with Puget Sound Estuary Program (PSEP) guidance (PSEP 1986) and the Dredged Material Management Program (DMMP's) Abbreviated Data Quality Evaluation (QA1) for Dredged Material Disposal Projects (PTI 1989) with revisions (PSDDA 1991). Results of this evaluation are reported on the attached worksheets in Appendix C. All data are determined to be acceptable. Holding times, detection limits and blank, reference material, analytical replicate analyses, and matrix spike and surrogate recoveries are within DMMP (PSDDA 1991) recommended warning limits or laboratory control limits with the following notes and exceptions:

Semivolatile Organics. The laboratory noted two problems associated with the semivolatile organics analyses. First, Method Reporting Limits (MRLs) for sample C13-A were elevated due to the laboratory's need to dilute the sample. Laboratories dilute samples when significant matrix interferences occur. Interferences result from the presence of multiple chemicals at elevated concentrations that mask the characteristic peaks displayed in chromatograms for other chemicals at the time of analysis. Using standard laboratory methods, some of the peaks interfering with the quantitation process can be eliminated (i.e., use of larger sample sizes, smaller extract volumes, and sample cleanup methods). If matrix interferences continue to impair quantification, the remaining peaks may be resolved by diluting the sample. Unfortunately, the process of diluting the sample also increases detection limits for all analytes quantified using that method. A dilution of three increases the detection limit by a factor of three. Samples may only be diluted up to 4 or 5 times before the detection limits exceed DMMP criteria. For C13-A, the resulting detection limits for benzyl alcohol, 2,4-dimethylphenol, benzoic acid, n-nitrosodiphenylamine, and hexachlorobenzene exceeded DMMP screening levels (SLs). Second, the primary evaluation criterion for benzoic acid, 2,3-dinitrophenol, and pentachlorophenol was exceeded in the Initial Calibration (ICAL CAL4553). In accordance with the method, the lab used an alternative means for evaluating performance by calculating the mean relative standard deviation of all analytes in the calibration. This alternative method met criteria.

Two other semi-volatile exceptions were noted during this review. Matrix spike recoveries for 1,4-dichlorobenzene (MS-47%, MSD-46%) were slightly less than the recommended 50% limit.

Results of other QA information (lab control sample, lab replicates, surrogate recoveries) were well within limits and no data qualification was necessary. Phenol was detected in the laboratory's method blank at levels greater than the method detection limit (MDL) but lower than the MRL. No data qualification was deemed necessary given the low concentration (3.1J $\mu g/kg$) detected in the blank.

No other problems were noted as part of this review.

<u>Pesticides/PCBs.</u> The laboratory noted two issues associated with the pesticides analyses. Like the SVOCs, MRLs were elevated for several pesticides due to matrix interferences and were flagged by the lab using the "i" qualifier. Also, sample confirmation comparison criteria (40% difference) for 4,4-DDE and 4,4'-DDT was exceeded in sample C13-A. For 4,4'-DDE, the higher of the two values was selected because no peak anomalies were noted. For 4,4'-DDT, the lower of the two values was reported because the alternate column showed matrix interferences.

For PCBs, no analytical problems were noted. However, the laboratory pointed out that due to the presence of Aroclors 1248, 1254, and 1260 in both sediment samples, the correct identification and quantitation of individual Aroclors can be subjective. Extra care was taken by the lab to select the appropriate analytical peaks associated with each sample. The lab acknowledged that the potential exists for a high bias in this case because more than one Aroclor can contribute to common peaks or the peaks themselves may be difficult to resolve. Despite these difficulties, all QA information indicated that the PCBs analyses resulted in high quality data.

No other problems were noted as part of this review.

Metals. The laboratory noted that antimony recovery in the matrix spike was below the PSDDA action level of 75-125%. Low spike recoveries of antimony are common in analytical samples. The cause of the low recovery has been reported to be due to the formation of Sb_20_5 in the presence of nitric acid. This antimony oxide compound is very adsorptive and is lost on silicate surfaces (i.e., sand, soil and glass beakers). The addition of HCl to the digestion, as required by method 3050 for ICP analysis, converts some of this adsorptive oxide to the $SbCl_6$ anion, which does not adsorb on undigested siliceous materials. The laboratory did not reanalyze samples for antimony because this is a normal occurrence for this analyte using the required preparation method. The SRM recoveries were acceptable, and results were not qualified.

Two other metals exceptions were noted during this review. The relative percent difference (RPD) measured between replicate mercury concentrations (26%) exceeded the DMMP's recommended limit of 20% RPD but was less than the laboratory's control limit of 30% RPD. The SRM and matrix spike recoveries for mercury, however, were acceptable and no

qualification was necessary. Metals (antimony, cadmium, silver) were detected in the laboratory's method blank at levels greater than the method detection limit (MDL) but lower than the MRL. No data qualification was deemed necessary given the low concentrations detected in the blank.

No other problems were noted as part of this review.

Total Organic Carbon. No QC or analytical concerns.

Wet Chemistry (Total Solids, Total Volatile Solids). No QC or analytical concerns.

Grainsize. No QC or analytical concerns.

3.2 Laboratory Results

A summary of the sediment physical and chemical results and a comparison against DMEF screening levels is presented in Appendix D. The sediment sample (C13-A) collected from the overlying material to be dredged was composed of 61% fines with the remainder being sand and a trace (<1%) of gravel. The C13-A sample was diluted as noted above and all the High Polynuclear Aromatic Hydrocarbons (HPAHs) including total HPAH, except Benzofluoranthenes exceeded DMEF SLs. The Semivolatiles noted in Section 3.1 had MRLs exceeding DMEF SLs due to the need for sample dilution. For all samples with MRLs exceeding DMEF SLs, the results were non-detects. Other than the HPAHs, the only other two analytes with detects above DMEF SLs were Total DDT and Total PCBs. Both of these detected analytes exceeded the DMEF SL concentrations by less than a factor of two. As noted in the introduction, this material is proposed to be dredged using a clamshell bucket and disposed at an approved upland facility.

The sediment sample corresponding to the post-dredge surface contained approximately 37% fines with the remainder being sand with a trace of gravel. The chemical concentrations for all analytes in this sample were less than DMEF SLs. According to the DMEF guidance, this sediment would be suitable for in-water placement without further testing.

4. CONCLUSIONS

Sediments lying below the proposed dredge prism consisted of about 2/3 sand and 1/3 fines with all chemicals of concern passing the DMEF SLs. Therefore, these sediments would be acceptable for in-water placement according to DMEF guidance.

Sediments to be dredged in the vicinity of Stations C1 and C3 were shown to consist of approximately 2/3 fines and 1/3 sand. These sediments exhibited:

- detected concentration exeedances of the DMEF SL levels for HPAHs, Total DDT and Total PCBs:
- MRLs for some semivolatiles in excess of DMEF SLs due to the need for sample dilution;
- an MRL for Benzoic Acid exceeding the DMEF ML due to the need for sample dilution; and
- no detected concentration exceedances of DMEF SLs for semivolatiles (other than the PAHs).

Material to be dredged in the vicinity of the conveyor was shown to be two to three inch crushed limestone.

All sediments are proposed to be dredged using a clamshell bucket with disposal to an approved upland facility.

5. REFERENCES

Parsons Brinckerhoff, 2005. Sampling and Analysis Plan, Ash Grove Cement Company, Willamette River, Portland, Oregon. Prepared for Ash Grove Cement Company in association with Integral Consulting, Inc.

Puget Sound Estuary Program (PSEP). 1986. Recommended protocols for measuring selected environmental variables in Puget Sound. Final Report. TC-3991-04. Prepared for EPA, Region 10, Seattle, WA.

Puget Sound Dredged Disposal Analysis (PSDDA). 1991. PSDDA Chemistry QA/QC and Streamlining Workshop, January 24. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

PTI Environmental Services, Inc. (PTI). 1989. PSDDA Abbreviated Data Quality Evaluation for Dredged Material Disposal Projects. Prepared for the Washington State Department of Ecology, PTI Environmental Services, Inc. Bellevue, WA.

U.S. Army Corps of Engineers (USACE), 1998. Dredged Material Evaluation Framework, Lower Columbia River Management Area, November.

Table 1 Sediment core information

Parameter	Core C1	Core C2A	Core C3		
Northing (NAD83, Lambert Coordinates, Oregon North Zone)	721,638 ft	721,527 ft	721,322 ft		
Easting (NAD83, Lambert Coordinates, Oregon, North Zone)	7,616,792 ft	7,616,773 ft	7,616,794 ft		
Design Dredge Depth (ft) CRD	-26	-26	-26		
Maximum Dredge Depth (ft) CRD	-27	-27	-27		
Leadline Measurement of Water Depth (ft)	22.0	31.5	29.3		
River Stage at Time of Coring (ft) CRD	4.4	4.3	4.6		
Existing Mudline Depth (ft) CRD	-17.6	-27.2	-24.7		
Retained Sediment Depth (ft)	13.2	10.0	10.4		
Maximum Depth of Retained Sediment (ft) CRD	-30.8	-37.2	-35.1		
Sediment Sample	C1-A	C2-Z	C3-A		
Designation	(dredge material)	(post-dredge surface)	(dredge material)		
	C1-Z		C3-Z		
	(post-dredge surface)		(post-dredge surface)		

PURPOSE: MAINTAIN NAVIGATION ACCESS AND BERTH FOR BARGES

VERTICAL DATUM: COLUMBIA RIVER DATUM (CRD), CRD IS 1.6' ABOVE NGVD AT WILLAMETTE RIVER MILE 2.9

ADJACENT PROPERTY OWNERS:

1. SIMPLOT

2. GEORGIA PACIFIC

LATITUDE: 45° 37' 19" N LONGITUDE: 122° 47' 00" W

FIGURE 2. PLAN VIEW OF PROPOSED DREDGING AND SAMPLE LOCATIONS

PROPOSED MAINTENANCE DREDGING AT ASH GROVE CEMENT COMPANY

IN: WILLAMETTE RIVER AT: RIVER MILE 2.9 COUNTY OF: MULTNOMAH

PURPOSE: MAINTAIN NAVIGATION ACCESS AND BERTH FOR BARGES

VERTICAL DATUM: COLUMBIA RIVER DATUM (CRD), CRD IS 1.6' ABOVE NGVD AT WILLAMETTE RIVER MILE 2.9

ADJACENT PROPERTY OWNERS:

1. SIMPLOT

2. GEORGIA PACIFIC

LATITUDE: 45° 37' 19" N LONGITUDE: 122°47' 00" W

SCALE: AS SHOWN

FIGURE 3. TYPICAL CROSS SECTIONS

PROPOSED MAINTENANCE DREDGING AT ASH GROVE CEMENT COMPANY

IN: WILLAMETTE RIVER AT: RIVER MILE 2.9 COUNTY OF: MULTNOMAH

APPENDIX A

CORE INFORMATION FORMS AND LOGS

"Outdoor writing products for outdoor writing people."

RECYCLABLE

"Rite in the Rain" - A unique All-Weather Writing paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather.

Available in a variety of standard and custom printed case-bound field books, loose leaf, spiral and stapled notebooks, multi-copy sets and copier paper.

For best results, use a pencil or an all-weather pen.

a product of

J. L. DARLING CORPORATION

Tacoma, WA 98424-1017 USA (253) 922-5000 FAX (253) 922-5300 www.RiteIntheRain.com

NSN: 7530-01-433-5654

LEVEL

All-Weather Notebook No. 311

ASH GROWE CEMENT. 6/05 DMMP: INTEGRAL/ ARSONS GOLDER.

4 5/8" x 7" - 48 Numbered Pages

Silas And work I Made	X: 791,5/7.4	0950: 1/20 Poste (Up- VEE) TO CHER	SHALE - JUST 41-ESTIVE	\mathcal{O}	B-63 - 19KE	from squedd.	-set up 10 kout care bude.	~669 AT LEAT 4 16 recovery	to rent < 26 2 2000 File	SAMALINE. SAMOLE VECK 13 E	. 624.	o lotte care	(035: 736 Record - il nak as	case effor is smaller for		-leave to stad point to willing.	5 5745132 61	PREPARE CARE TUNE -12th.	11.10 . 12.00 He water depth	1(21 : POIST & ON GPS - BECIN CORING	70	1150 : outloping by 1.2 pt - 60?	
61,10c ASH WONE June 5. House	MEET AT CATHERLA	Loss up for DREBGE CHARACIANTAN	Jams panises.	VLASTELICIA	S HRUTFIOLI	1050 MOORE -1-780MAC	1820: MOR TO ASH Clase.	APANE AT SITE (915	· RIVER GALT 4.6 CR)	IN URES FUR WITH	Sulface Cliting of TAU. 263 Chow	LINESTONE CONJEMUN BELT	- ALSO USE CARELA Feat 075 EduATION	of saface prior to sander	- DSPTH TO TALLINGS - 23 FE	3930: Sest Westering < 4° Ashmerak	Kows PHOrs () - SAMME (4- 721. 494.3	0935 MOD 50 NORTH SIDE OF FALLUCS	To take coli	sa BE	

2																
4 // los ATH Chave 5. Marke	feary is take - cap and	70 C3	· Often Cole	(los Cope Recours 65%, our	Pereta	Re 3	CLE BULAK	(30: MOBS TO CATHERER PAPER FOR	1370: Ruch Gauce 47 74 @ 5.0H	. K.C. (. 6 /	(420 : (2/6) PROCESSING FILITAGES -	566	MILE SHILL ENLOADISC COES AT	1515. MOB TO MEGY (CONE.	so/1/8 (M)	

SEDIMENT CORE LOG

PROJECT: Ash Grove Cement DM Char. Core ID: 1 pg y of /

Collected:	Processed:
Date: <u>6// 105</u> Drive Length: <u>13-2</u>	Date: 6/2 /05
Time:/_30 Tide Level (CRD):	Time: /230
Recovery Length: 10 10 Mudline Depth: 22.0	Core Length: 313 cm (123")
Recovery Efficiency: - \$0% Vessel:	Location: INTELEAL-OLYMPIA
Crew: Golden / John V. Joss Mone (FLTEBRAL)	Crew: S. F. TZGENALD, I. STLPAKOFF
<u> </u>	

Depth in		0	Grain Size				
Core	Lithologic Description:		(%	%) <u> </u>		PID	·
(cm)	(Grainsize, color, density/consistency, odor, organics, debris)	G	S	Si/Cl	Photo ID	(ppm)	Sample ID
0-82	SILTY SAND (COMISE SAND IS FINE-		65	38		N/A	CI-A
	V. FINE, TR THE SPECIALISED PALECIPITATES &	j				NA	(0-6'9")
	WHITE) SAND IS DK GRAYISH BEGUN	/					(0-205.5cm)
	INTERGED DED SILTY STAY O + SAMPY SILT.						
	DENSE, SMALL (405cm) show lenses			,			
	MILD SUIFIDE ODOR TR KOOTLETS						.,
	+ small wordy organis.	l ,	ļ				
	TR MED ANGULAR SAND GRANS IN						
	LOW @ 77-82 cm.						
			ļ			.	The section of the se
82-	SILT(AL)TA V. F.NE SAND, STIPF			100	as artesionatei erra es		
123	MED GRAYISH BROWN. TR LIE 4T				.,,		
	MED GRAYISH BROWN. TR LIE 4T SHEEN, V. MILD PET. ODOK MED PLASTICA	Į					
		1					· · · · · · · · · · · · · · · · · · ·
123-	SAMOY SILT (ML), SILT WITH		40	60			
169	V. FINE SAND INTERSEDOED W/ SAND						
	(FINE, DK GRAY) IN LENSES A BED COM						
	THICK, LOW PLASTICITY, MILD PET.						
	GOOR (OLY), LIGHT SHEEN						
	TR WOODY ORGANICS	,	200 151				error marionemos como acos acos a
1 , .	en e	.,,,					C1-2
169-	SAMD WISILT (SP-SM) SAND IS	,	50	10			(6'9"-7'7")
244	FINE, PUDRY GRADED, DX BLOWNISH						(2055 cm = 231cm)
	GRAY. DENSE, SILT OCCURS IN	<u>,</u>					
	BEOS & LEWSES (~2 mm to 0.5 cm Thick)]					· · · · · · · · · · · · · · · · · · ·
	SILT IS DK GRAYISH BLOWN.						
	MILD SULFULOOOL TRACE SHEED IN			1-211.211.144.11			**************************************
	\$ LESSES \$ TO 179 cm.						
	TR MICH AND FED GRAINS INSAND.					ļļ.	
	· · · · · · · · · · · · · · · · · · ·					 .	And the second second second
244-	SAME AS ABOUT, SILT BED		70	30			
313*	FROM 266-283 cm, LOW-MED PLAST.						
	MILD DOOK. (SM)						
	* Button 10 cm in core disturbed					1	and the second second second second
	by removal of core catcher (by catcher feeth). Fixed measured						
	Catcher feeth). Foeld measured						
	recovered length includes now		,			1	
	OF core catcher that was compare						
	upon permount			ļ		1	
			ļ			- V	
		1	<u></u>	1			
Core sec	ment breaks at (cm): 123 - 123 - 244 - 244 -	- 3	,3				

PROJECT: ASHGROUZ DAMA

STATION: C/

Field Log by: J.Moort	Processing by:	Coring by: GOLDER / JOHN.V.
Tide Level from MLLW: 4.6 Depth to Mudline: 22.0 Mudline Elev.:		Total Drive Length: 13.2 Recovered Length: 10.0 Recovery Efficiency: ~ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Note: All elevations, depths, and distances in feet.

Tube Sample Length No. Visual Description Photo Interval Summary No. Acquisition Note The Sample No. Acquisition Note Acquisition No			depths, and distances in feet. n - Core Tube Lengths	In-Situ Summary Log					
1	: E	· '		1					
3 - SUT, BRDWN, Wood dups 4 - WO Streen, NO ODOR 5 - Silk Comment and 5 - Silk Comment and 7 - Silk Comment and 8 - Silk Comment and 8 - Silk Comment and 9 - Silk Comment and 10 - Sand, No oder Streen 11 - Sand, No oder Streen 12 - Sand, No oder Streen 13 - Sut Chan, Little fine 5cm 14 - Silt Comment and 15 - Silk Comment and 16 - Silk Comment and 17 - Silk Comment and 18 - Silk Comment and 19 - Silk Comment and 10 - Sand, No oder Streen 11 - Sand, Some silk No 12 - Silk Comment and 11 - Sand, No oder silk and 12 - Silk Comment and 14 - Sand, No oder silk and 15 - Silk Comment and 16 - Silk Comment and 17 - Silk Comment and 18 - Silk Comment and 19 - Silk Comment and 10 - Sand, No oder Streen 11 - Sand, No oder Streen 12 - Silk Comment and 10 - Sand, No oder Streen 11 - Sand, No oder Streen 12 - Silk Comment and 14 - Sand, No oder Streen 13 - Silk Comment and 16 - Silk Comment and 17 - Silk Comment and 18 - Silk Comment and 19 - Silk Comment and 10 - Sand, No oder Streen 10 - Sand, No oder Streen 11 - Sand, No oder Streen 11 - Sand, No oder Streen 12 - Silk Comment and 12 - Silk Comment and 14 - Sand, No oder Streen 18 - Silk Comment and 19 - Sand, No oder Streen 19 - Sand, No oder Streen 10 - Sand, No oder Streen 10 - Sand, No oder Streen 11 - Sand, No oder Streen 12 - Silk Comment and 12 - Silk Comment and 13 - Sand, No oder Streen 14 - Sand, No oder Streen 15 - Sand, No oder Streen 16 - Sand, No oder Streen 17 - Sand, No oder Streen 18 - Sand, No oder Streen 18 - Sand, No oder Streen 19 - Sand, No oder Streen 10 - Sand, No oder Streen 11 - Sand, No oder Streen 12 - Sand, No oder Streen 13 - Sand, No oder Streen 14 - Sand, No oder Streen 16 - Sand, No oder Streen 17 - Sand, No oder Streen 18 - Sand, No oder Streen 19 - Sand, No oder Streen 19 - Sand, No oder Streen 10 - Sa	Length	No.	Visual Description	Interval	Summary	No.	Acquisition Notes		
5 6 7 Silk Gray, med 7 Placticity, little line 8 Sond, No old Sheen 9 10 11 SMy GRAY, fine taned 11 12 12 13 SMY GRAY, LITTLE FIRE 51 14 Sond, no old no sheen 14 Catter empty: 15 16 17	2		- SUT, BROWN, wood ohips				EASY		
Silk (rang mod 1	_5		~ O Sheer, ~ O ODOR		-4 4	#1	CORING		
10 11	7		Silt Comp med fine plasticky, little fine sand, no old sheen		7				
11 SANT GRAM Fine to ned 12 SOME SILE, NO 13 SILET, CRAM, LITTLE FINE SIM 14 Cather empty: 15 16 17 17 18 19 10 11 11 11 12 11 12 11 12 13 14 15 16 17 16 17						#2			
13 SULT, CRAN, LITTLE FIRE SIN 134 CATCHEL 14 Sond, no olar, no sheen 1 1 14 1-2" 15 15 16 16 17			SANA GRAM Fine to med grain Some sit, no odor Isheen		-TT C/ -TT H3	#3			
15 15 15 0 vēR DPI VE	_13		SILT, CHAN, LITTLE fine grin		210		CATCHEL		
			Cather Empty.	13.2			OVER		
							DEIVE		
	~								

Core Tube Field Cut Information									
Sample No.	Tube Length Interval	Segment Length							

Sample Test Information								
Sample No./Tests	In-Situ Depth Int.							

Notes:

SEDIMENT CORE LOG

PROJECT: Ash Grove Cement DM Char. Core ID: 22 pg j of j

Collected:	Processed:
Date: <u>6/, 105</u> Drive Length: <u>10</u>	Date: 6/2 /05_
Time: ردور Tide Level (CRD):	Time: 1000
Recovery Length: 7/10 ⁴ Mudline Depth: 31.3 ⁻	Core Length: 235,cm (92.5")
ecovery Efficiency: 70% Vessel:	Location: INTEGRAL- OLYMPIA
Crew: Coller / John V.; Joss Masse (INTEGER)	Crew: 5. F. TZGERAG: I STUPAKOFF
	,

Depth in		Grain Size					
Core	Lithologic Description:	(%)		6)		PID	
(cm)	(Grainsize, color, density/consistency, odor, organics, debris)	G	s	Si/CI	Photo ID	(ppm)	Sample ID
0-7	SITY SAND (SM). F.NE, MED GRAY		80	20		NA	C2-2
	New LOOSE, SAMRATED 100/0 WOOD				****	/	(0-7.5")
	CHIPS + TWIDS. LIGHT SHEEN SULPIDE			\$2.5.12.12 of 14	************		(0-19m)
	oper Polycheate observed. Roofmake						
	(file) who are upon sampling et		50	20			
7-31	SILTY SAND (SM). P.NE. TR FINE	45	35	16 OF			y
	AND GRAVEL MED GRAY, TR ORGANICS					 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(ROOTIETS, BACK DITSELS) NO OOR			*			
	INCREASING SILT IN LENSES		ļ			1	
	RED FIBE OF SEVEL UPON SAMPING	ļ			ereken maren a men	1	
31-	SANDY GRAVEL (GW) SAND FINE!	7	34	2)			
31-	CARVELLET NE, LOGCOAISE) AMOULAE	10	20			1	
	DX GRAY, NO ODOR NO SHEEN.		1				,,,,,,
	ABRADT BASAL CONTACT. WELL CRAVED						
	GRAVER W/ SAND. DEUSE	,		,	***************************************		
55-	SANDY SILT (ML) MED GRAYLH BROWN	10	30	60	60 P 3 P 40 P 81 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9		<u> </u>
83	SAND PREDOM FINE, (TRMED) GRAVEL		ļ		,]	94,944
	(COMO FINE HOLO COARSE) ANDULAR		11111111	\$41.484°\\#1#	**********************		***************************************
	TRACE ORDANICS SAND OCCURS						***************************************
	IN LENSES + BEDS LIE TO 1 cm THICK		ļ				
·	MILD SULFOR ADER, NO SHEEN	.]		ļ			
-2	LOW PLASTICITY STIFF					\\ · ···	
53-	SILT TR FINE SANDTILLYTHEO GRAYISH			100		1.1	
/ 6 7	BROWN, MED PLASTICITY. LIGHT SHOWN					.	
	IN SMALL LENSES (605 LM), LIGHT. PET OPER. TR ORGANIC LENSES						
	6,5 cm - Thick Levs OF CLAY @ losen				***************************************		
	STIFF	1	1		***************************************		
		1					
119-211	SILT, IN FINESAND (ML) AS AboVE		25	75			.,
	MED PLAST MED CRAYISH BLOWN.						
	LENSED + BERS (1-4 cm Thick) OF						
	FINE SAND (DIK GRAY) W/ LIGHT						
	SHEEN. LIGHT PET ODOR.				P*************************************		. Variable to the control of the con
	571FF.			ļ	garrava-agarpias asgrij		
119-235	SIGTY SAUD (SA)) - SAND IS FINE,		65	- کوئر			
	DK GRAY OCCURS IN LAMINAGE		· 				
	BEDS (Bonn-1cm Mick) above 223cm,			1			
	more homogeneous below SILT + SILT/CLAY I	1	+			1 - 1 -	
	LUNE CHOOL LUNE DIE DON (INTERPROBLE)	4					
Cara	ment breaks at (cm): An train 18 - 255			1			1

Core segment breaks at (cm): G-119 119 - 235 cm

LIMIESTONE GRAVIEL MATERIAL É SUCEACE ON SITE. TOOK PHITO OF THIS

SOF

PROJECT: ASH Croud
STATION: CAN CLA

Field Log by: J.Mooké	Processing by:	Coring by: GOLJER / JAHN	.V.
Tide Level from MLLW: 4-6 Depth to Mudline: 31.5 Mudline Elev.:	Time: (035	Total Drive Length: 10' Recovered Length: 7'10' Recovery Efficiency: 70'	

Note: All elevations, depths, and distances in feet.

Core Description - Core Tube Lengths			In-Situ Summary Log			
Tube Length	Sample No.	Visual Description	Photo Interval	Interpreted Summary	Sample No.	Acquisition Notes
_123456789101112131415161718181718181818		A H2D + Floce larger SROWN, FIRE FLOCK I INTE WHE FIRE SON I, NO ODER BILLY CUAY - CRAM TO AK BROWN HIGH PLACYCLIST NO ODOR / SHEEN LICHT CRAM SILT, LITTLE FINE SAND, NO ODOR NO SHEEN		-1 -2 -3 C2 q -4 #/ -5 4' -64 -7 -8 C2 q -9 # 2' -10 TD11 -12 -13 -14 -15 -16 -17 -18	#1	Eq3 4 Corins L

Core Tube Field Cut Information						
Sample No.	Tube Length Interval	Segment Length				

Sample Test Information	
Sample No./Tests	In-Situ Depth Int.

Notes:

SEDIMENT CORE LOG

PROJECT: Ash Grove Cement DM Char. Core ID: 23 pg 1 of 1

<i>'</i>	
Collected:	Processed:
Date: 6/1/05 Drive Length: 10.4/	Date: 6/2/05
Time: /zaś Tide Level (CRD):	Time: ; 355
Recovery Length: 7'10' Mudline Depth: 29.3'	Core Length: 24@ on (9.75/8") INCL.
Recovery Efficiency: 70% Vessel:	Location: INTERPL-DLYAPIA
Crew: Golder / tohn V. : Joss Marge (INTEGER)	Crew: S. F.TZ.GFRALD: I. STR.PAKEF

Depth in		G	rain	Size			
Core	Lithologic Description:		(%	6)		PID	
(cm)	(Grainsize, color, density/consistency, odor, organics, debris)	G	S	Si/CI	Photo ID	(ppm)	Sample ID
0-122	SILT (ML) THE FINE SAND, WITRACE BEDOF FINE SAND @ 18-20cm (BLACK) SILT IS MED GRAYISH SROWN, TR SHEEN FLORETS MILD PET. ODOR. STIFFWIRETR V. THAN (<1 mm) lenses OF Light GRAY MATERIAL betw 71-77cm IN SILT. TRACE RECTLETS + WOOD DEBLIS! TR ANDWLAR GRAYEL (2") @ 23cm, NOTED	45				11/4	
/27- 262	WOON SAMPLING L-M PLASTICITY SILT (ML), FEW SAND LENSES + BEDS (AL-5 MM Thick), SAND IS FINE DK GRAY, SILT IS STAFF DK GRAYISH BEOWN. TR FLORETS OF SIMEN. MED PLASTICITY (WET) LAKUE WOOD CHUNK Q 174 CM TRAKE KOOTLETS. MILD PET. ODOR		10.	<i>5</i> 0			42 3
702- 219	ASAMO (SM), FINE, DY GRAY HEAVY SHEEN, MOD PET ODOR IN BOTTOM 16CM (BELOW ZI3 cm). BOTTOM 14CM DISTURBED BY REMOVAL OF CORE CATCHER. SAND IS DENSE, WI TR WOOD FRAGMENTS.		ss -	15			$ \begin{array}{c} (3 - \frac{1}{2}) \\ (3' 6'' - 3'3'') \\ (76 - 46) \end{array} $
Z 24	CATCHEL (ADDITIONAL 19 cm) CONTAINS SILTY FINE SAME WITTER WOOD CHENKS, HEAVY SHEEN ATTOR FILE MOR LEWISE MOR DAOR (PET), SILT C BOTTOM OF CATCHER, WI FREE PRODUCT LEWISE @ BOTTOM	3-1-1					
					•	Account of the second s	
Core seg	ment breaks at (cm): (3-122 cm; 122 - 244					<u> \\</u>	<u> </u>

Integral Consulting, Inc.

PROJECT:

ASH GESUÉ

STATION: REPLICATE: C3

Field Log by: J.More	Processing by:	Coring by: GOLDER (JOHN. U.
Tide Level from MLLW: 4-6 Depth to Mudline: 29.3 Mudline Elev.:	Time: 1000	Total Drive Length: しっ.4。 Recovered Length: チリップ Recovery Efficiency: チャン

Note: All elevations, depths, and distances in feet.

Core Description - Core Tube Lengths			In-Situ Summary Log			
Tube Length	Sample No.	Visual Description	Photo Interval	Interpreted Summary	Sample No.	Acquisition Notes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	SILT	Hoot Floce layers Brown, sit, no oder no shear Sintlean, Dean to DK Brown Hich PLASTICIAN - NO ODOR /sHEE Cofan (4047), trace fire and - Free product - one		-1 -2 -3 -4 -6 -6 -7 -8 -7 -8 -7 -8 -7 -8 -7 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18	NO.	EAST CORING

Core Tube Field Cut Information						
Sample	Tube Length	Seament				
No.	Interval	Length				

Sample Test Information	
Sample No./Tests	In-Situ Depth Int.

Notes:

APPENDIX B

LABORATORY REPORT

July 19, 2005

Service Request No: K0500755

Jerald Ramsden
Parsons Brickerhoff Quade & Douglas, Incorporated
400 SW 6th Ave.
Suite 802
Portlland, OR 97204

RE: 80294/Ash Grove Cement DM Char.

Dear Jerald:

Enclosed are the results of the sample(s) submitted to our laboratory on June 3, 2005. For your reference, these analyses have been assigned our service request number K0500755.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281.

Respectfully submitted,

Columbia Analytical Services, Inc.

Abbie Spielman Project Chemist

AS/jeb

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Parsons Brickerhoff

Service Request No.:

K0500755

Project:

Ash Grove Cement

Date Received:

6/3/05

Sample Matrix:

Sediment

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Seven sediment samples were received for analysis at Columbia Analytical Services on 6/3/05. Minor discrepancies were noted upon initial sample inspection. Additional details about the exceptions are noted on the cooler receipt and preservation form included in this data package. These issues were resolved with the client on 6/6/05. All remaining samples were received in good condition and consistent with the accompanying chain of custody forms. The samples for analysis were stored in a refrigerator at 4°C upon receipt at the laboratory. The samples for archive were stored frozen at -20°C upon receipt at the laboratory

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals

Matrix Spike Recovery Exceptions:

The matrix spike recovery of Antimony for sample C13-A was below the CAS control criterion. Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analyses. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. Since low recoveries result from a method defect and can be magnified by certain matrix components, no corrective action is appropriate other than using alternative procedures, which specifically target Antimony. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicate the analysis was in control.

No other anomalies associated with the analysis of these samples were observed.

Organochlorine Pesticides by EPA Method 8081A

Elevated Method Reporting Limits:

The detection limit is elevated for several analytes in sample C13-A and C123-Z. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compounds at the detection limit. The results are flagged to indicate the matrix interference.

Sample Confirmation Notes:

The confirmation comparison criteria of 40% difference for 4, 4'-DDE and 4, 4'-DDT was exceeded in sample C13-A. For 4, 4'-DDE, the higher of the two values was reported since no peak anomalies were observed for this analyte. For 4, 4'-DDT, the lower of the two values was reported because an apparent interference on the alternate column that produced the higher value was observed.

Approved by Mi April

Date 7/19/05

Continuing Calibration Verification Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Continuing Calibration Verification (CCV) 0712F021 and 0712F040: Decachlorobiphenyl, alpha-Chlordane, gamma-Chlordane, Dieldrin, 4, 4'-DDD, 4, 4'-DDT. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the average percent recovery of all analytes in the verification standard. The standard meets the alternative evaluation criteria.

Results for 4, 4'-DDT in samples C13-A and C123-Z have been reported from a column using average percent recovery of all analytes in the verification standard.

No other anomalies associated with the analysis of these samples were observed.

PCB Aroclors by EPA Method 8082

Aroclor Identification:

Three Aroclors were identified in sample C13-A and C123-Z: Aroclor 1248, Aroclor 1254, and Aroclor 1260. When mixtures of PCB Aroclors are present in a sample, correct identification and quantitative analysis of the individual Aroclors can be subjective. In particular, when mixtures are present, differentiating Aroclor 1242 from Aroclor 1248 can be difficult.

A review of the sample chromatograms indicated the presence of PCB patterns that spanned the entire elution range from Aroclor 1242 through the end of Aroclor 1260. Based on individual PCB peaks in the early portion of the chromatogram, Aroclor 1248 was identified and quantitated. Aroclor 1260 was identified based on the presence of PCB peaks eluting late in the chromatogram. The remainder of the PCB pattern was identified as Aroclor 1254 because PCB peak height in the middle of the chromatogram was larger than could be attributed to Aroclor 1242, Aroclor 1248, or Aroclor 1260.

When Aroclor mixtures are present in a sample, care is taken to minimize the possibility of double-counting PCBs. Analytical peaks are selected based on the best resolution possible for that particular sample. However, when a mixture of Aroclors 1248, 1254, and 1260 are present in a sample, the potential exists for a high bias from contribution of one Aroclor to another due to common peaks or peaks that cannot be completely resolved.

No other anomalies associated with the analysis of these samples were observed.

Semivolatile Organic Compounds by EPA Method 8270C

Elevated Method Reporting Limits:

Sample C13-A required dilution due to the presence of elevated levels of target analytes. The reporting limits are adjusted to reflect the dilution

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID CAL4553: Benzoic Acid, 2, 4-Dinitrophenol, Pentachlorophenol. The primary evaluation criterion was exceeded for the following analytes in ICAL ID CAL4552: Benzoic Acid, 2, 4-Dinitrophenol. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 5.8% for CAL4553 and 6.0% for CAL4552. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

Approved by Am Jul Date 7/19/

Chain of Custody Documentation

Columbia Analytical Services inc.

CHAIN OF CUSTODY

1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222x07 • FAX (360) 636-1068

PAGE	j

January									, ,				. ,								U					
PROJECT NAME ASH GR	OUE	CEMENT	DM	CHAR	₹.		7	1	$= I^{-}$	7		\overline{I}	\mathcal{T}	7	10	7/	7	\mathcal{T}	7	7	7	7	7	7		
PROJECT NUMBER						7	' · /		1	/ \$	₹/	/	I_{\square}	/ ₄ 3	1 2	/	/ ,	/ ,	/ /	/ l		I_{\square}	/ i	/ /	′ / /	
		AMSDE	1			\neg			SE	18	/ /	/ /	15	3 8/	815	' /		£/	/;	δ ^ν (8	S) /	2009	/		/ /	
COMPANY/ADDRESS						CONTAINED	ફ /	- /	624 5 62 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Oil & Control Son	/3			<u> </u>			4/		10 /S	100 C	9/				
400 SW 6th						∀ ₹	'/	\int_{s}^{iq}		25/27	000	` / ٤	' <i>[4</i>]'	: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$/ {	7 / × ×				Ş]/ Ş	3/		/	/ /	
CITY/STATE/ZIP (2017)	TVE,	316 B				1 È.	/	15/	$\frac{\alpha}{2}/\frac{1}{2}$	$\mathscr{E}/\widetilde{\mathscr{F}}_{0}$		5/F.	11 8		16	18		/ 3	14.	45 di-	18	/ t.,	10	/∜,	/ /	
E-MAIL ADDRESS	OK.	9720	4		/	8/	' /.		\/ # R		Spiral	I ES	1,23	[\$\\\	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Q = L	ο/ /	/ ž /	188	[\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ ₹/	1 SC# (2)	12/	(2) (2) (3)	/	
PHONE # 4 67 3 3 3		FAX#					1	8	#20) #20)			### ##	R. /	\$\$\\		300						£/	$\neg . /.$	₹/	/	
PHONE # 503 - 274 - 8772 SAMPLER'S SIGNATURE			***			¥ /	18					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sign		7.	2 8			$\sum_{i \in \mathcal{N}} \sum_{i \in \mathcal{N}} (i)$	S/ 8	Ž/\{	٦/٧	3/3	? /	/	
				,	1 \$		Sem	ÿ/å	2 2 Z	J'as	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\] {		g / g	75	150)/ð	1	7	'/ U		REMARKS	1
SAMPLE I.D.	DATE		LAB I.D.	 	 	A. 1944	/ ⁵⁵ _	/-	6/-		7	10 4	100	106	/ 4	/ = 8	7-0	/ 2 -	<u>/</u>	/ ~			/ -		/ NEWARKS	_
<u>Ca-z</u>	6-2-0	1235		SEP	2			П					L								X					
C1-2		1345			2					$oldsymbol{ol}}}}}}}}}}}}}}}}}$			<u> </u>								X					
C1-A		1350			2	i di di Sebing															X					
C3-A		1430			2			П													X					
C3-2		1414			2	5.41 M y 45% Arg		П													X				· · · · · · · · · · · · · · · · · · ·	
C13-A	1	1452		V	3		X	K	· -			X	X			X			X		X	X	ж/			
	6-20	1505		SEP	3	e de la compansión de l	X	X				X	X			X			X		X	X	X			$\int \infty$
								\prod																		
							7	1	1	1		 													······································	
						46489 7375		 \	+	+	╂												-+			-
	····				<u> </u>	4 X 55					<u></u>	<u> </u>								l			لــــا			_
REPORT REQUIREME	ENTS	E .	ICE INFOR		4	<u>Circle</u>	which	meta	s are to	be an	alyzed:															
I. Routine Report: M						Tot	tal Meta	als: A	TAAS)	Sb E	Ва Ве	ВСа	(C)	Co C	or Cu) Fe (Pb) N	/lg Mi	т Мо	(Ni) h	< Ag	Na	Se Si	TI 9	Sn V Zn Hg	
Blank, Surrogate,		Bill 10:							_																Sn V Zn Hg	
required		l		*		i .																				4
II. Report Dup., MS,	MSD as	TUDNAD	OUND DEC	NI LIDE NAI	ENTO	*IND	ICATE	STA	ATE H	YDRO	CARB	ON PI	ROCE	DUHE	: AK	CA	WI	NOF	HW	ESI	OTHE	:H:		_(CIR	CLE ONE)	\dashv
required		, , , , , , , , , , , , , , , , , , , ,	OUND REC		ENIS	SPE	CIAL II	NSTI	RUCTI	ONS	COMM	IENTS	:		0.0	N.A.	6/4	ys /	1				0	,		
III. Data Validation Re	eport	5 Da	ır	40 111.		A	u	1	ANA.	L450	=5	PER	ک ے	40	Cn	AA	•	ĺ			41	W		اي		
(includes all raw d		1		م معادل می د	day.a\				,	•				_		PU	\Box	\sim	8	60	. J.	$\gamma \nu$	~~	1/2		
IV. CLP Deliverable F	Report	1	ndard (10-15 vide FAX Res		Jays)	SPE	REEL	1	AG	LHI	UES	P	OR!	s#'			J		0.	m	00	()= a. 大	16/16/16/16/16/16/16/16/16/16/16/16/16/1	900		
V. EDD			nde i Ax ne	ouno		İ														V	W	.00	A	}		
		Red	quested Rep	ort Date			ee a					CAI		13/0		086						o^	K-14	J		_]
RELINQUISH	IED BY:		T	<i>p</i> ,>	RECE	IVED	BY:		J -				REL	ΠΜΩΠ	ISHE	BY:			1			RE	CEIVE	DBY:	L12105	1
12 Chololin	6/zlci	5/615	Just	401		//6	12/6	. سې	4.29	pm	0	ng/ S	25)	f Land	19			6:15	-/k	Ba	ىل	LLA			16 pm	
Sighature) [Dete/Tin		Signa	iture	n	D	ate/Tir	ne		1 5	Şio	nature	10		# Dal	te/Tim	е	A	27 1		ure 1		F	Date	Fine (
Printed Name	Firm	tna L	Printe	<u>स रिक्र</u> ed Name	15 dec		irsans irm	<u>161</u> 2	<u>neks</u>	rh.#	<i>)e.</i> Prir	rted N		usi	<u>Gra</u> Fin						d Nam			Firm		

Table 3.1 Testing methods: Dredged Material Management Framework (USACE, 1998)

Parameters	Preparation	Analysis	Sediment
	Method	Method	MDL (1)
Conventional Analytes			
Grain Size		Modified ASTM with	
		Hydrometer	
Total Solids (%)		(2)	0.1
Total Volatile Solids (%)		(2)	0.1
Total Organic Carbon (%)		(2,3)	0.1
Martin Compiler			
Metals (mg/kg)	A	CEAA (C)	2.5
Antimony	Appendix D (5)	GFAA (6)	2.5
Arsenic	Appendix D (5)	GFAA (6)	2.5
Cadmium	Appendix D (5)	GFAA (6)	0.3
Copper	Appendix D (5)	ICP (7)	15.0
Lead •	Appendix D (5)	ICP (7)	0.5
Mercury	MER (8)	7471 (8)	0.02
Nickel	Appendix D (5)	ICP (7)	2.5
Silver	Appendix D (5)	GFAA (6)	0.2
Zinc .	Appendix D (5)	ICP (7)	15.0
Overview (wee/lee)			
<u>Organics (ug/kg)</u> LPAH			
Naphthalene	3550 (9)	8270 (10)	20
Acenaphthylene	3550 (9)	8270 (10)	20
Acenaphthene	3550 (9)	8270 (10)	20
Flourene	3550 (9)	8270 (10)	20
Phenanthrene	3550 (9)	8270 (10)	20
Anthracene	3550 (9)	8270 (10)	20
2-Methylnaphthalene	3550 (9)	8270 (10)	20

18

Table 3.1 Continued

Miscellaneous Extractables			
Benzyl alchohol	3550 (9)	8270 (10)	6
Benzoic acid	3550 (9)	8270 (10)	100
Dibenzofuran	3550 (9)	8270 (10)	20
Hexachloroethane	3550 (9).	8270 (10)	20
Hexachlorobutadiene	3550 (9)	8270 (10)	20
N-Nitrosodiphenylamine	3550 (9)	8270 (10)	12
Pesticides			
Total DDT			
p,p'-DDE	3540 (13)	8081 (13)	2.3
p,p'-DDD	3540 (13)	8081 (13)	3.3
p,p'-DDT	3540 (13)	8081 (13)	6.7
Aldrin	3540 (13)	8081 (13)	1.7
Chlordane	3540 (13)	8081 (13)	1.7
Dieldrin	3540 (13)	8081 (13)	2.3
Heptachlor	3540 (13)	8081 (13)	1.7
Lindane	3540 (13)	8081 (13)	1.7
Total PCB's	3540 (13)	8082 (13)	67

^{*}Total PCB's BT value in ppm carbon-normalized

- 1. Dry Weight Basis
- 2. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Estuary Program, 1997.
- 3. Recommended Methods for Measuring TOC in Sediments, Kathryn Bragdon-Cook, Clarification Paper, Puget Sound Dredged Disposal Analysis Annual Review, May, 1993.
- 4. Not used
- 5. Recommended Protocols for Measuring Metals in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Estuary Program, 1997.
- 6. Graphite Furnace Atomic Absorption (GFAA) Spectrometry -SW-846, Test Methods for Evaluating Solid Waste Physical/Chemical Methods, EPA 1986.
- 7. Inductively Coupled Plasma (ICP) Emission Spectrometry -SW-846, Test Methods for Evaluating Solid Waste Physical/Chemical Methods, EPA 1986.
- 8. Mercury Digestion and Cold Vapor Atomic Absorption (CVAA) Spectrometry -Method 7471, SW-846, Test Methods for Evaluating Solid Waste Physical/Chemical Methods, EPA 1986.

10

20

Table 3.1 Continued

HPAH			
Fluoranthene	3550 (9)	8270 (10)	20
Pyrene	3550 (9)	8270 (10)	20
Benzo (a) anthracene	3550 (9)	8270 (10)	20
Chrysene	3550 (9)	8270 (10)	20
Benzo (b) fluoranthene	3550 (9)	8270 (10)	20
Benzo (k) fluoranthene	3550 (9)	8270 (10)	20
Benzo (a) pyrene	3550 (9)	8270 (10)	20
Indeno (1, 2, 3-cd) pyrene	3550 (9)	8270 (10)	20
Dibenz (a, h) anthracene	3550 (9)	8270 (10)	20
Benzo (g, h, i) perylene	3550 (9)	8270 (10)	20
Chlorinated Hydrocarbons			
1,3-Dichlorobenzene	P&T (12)	8260 (11)	3.2
1,4-Dichlorobenzene	P&T (12)	8260 (11)	3.2
1,2-Dichlorobenzene	P&T (12)	8260 (11)	3.2
1,2,4-Trichlorobenzene	3550 (9)	8270 (10)	6
Hexachlorobenzene (HBC)	3550 (9)	8270 (10)	12
Phthalates			
Dimethyl phthalate	3550 (9)	8270 (10)	20
Diethyl Phthalate	3550 (9)	8270 (10)	20
Di-n-butyl phthalate	3550 (9)	8270 (10)	20
Butyl benzyl phthalate	3550 (9)	8270 (10)	20
Bis(2-ethylhexyl)phthalate	3550 (9)	8270 (10)	20
Di-n-octyl phthalate	3550 (9)	8270 (10)	20
Phenols			
Phenol	3550 (9)	8270 (10)	20
2 Methylphenol	3550 (9)	8270 (10)	6
4 Methylphenol	3550 (9)	8270 (10)	20
2,4-Dimethylphenol	3550 (9)	8270 (10)	6
Pentachlorophenol	3550 (9)	8270 (10)	61

11

19

Columbia Analytical Services Inc. Cooler Receipt and Preservation Form

PC (45)	
rc	

Pro	ject/Client	Parsons		Wo	rk Order K05_	0071-5			
Сос	oler received on	ce/h/05	and opened on	6/3/05	by	A-Jucl	<u> </u>		
1.		als on outside of coole	ers?					Y	\bigcirc
2	Were custody sea							4	. 3.1
2.	•							Y	—— [N
3. 4.		nd date present on the airbill available and fi	•	- inte : 11	JD)			V	-14
5.	COC#	mom avanaole and n	lea/ II no, record	airoiii number:	1, 2		_	Y	N
	Temperature of	f cooler(s) upon rece	ipt: (°C)	1.5					
	Temperature B	lank: (°C)		0,4		-			
	Were samples har	nd delivered on the sa	me day as collecti	on?				Y	V
6.		pers properly filled or	1000	.)?				(A)	N
7.	Type of packing	material present/	Щ5						
8.	Did all bottles a	rrive in good conditi	on (unbroken)?					(3)	Ν
9.	Were all bottle la	bels complete (i.e an	alysis, preservatio	n, etc.)?				0	N
10.	Did all bottle la	bels and tags agree w	ith custody papers	s?	•			Q)	N
11.	Were the corre	ct types of bottles us	ed for the tests ir	idicated?				0	Ν
12.	Were all of the p	preserved bottles rece	ived at the lab wit	h the appropriate p	oH?			Y	N
13.	Were VOA vials	s checked for absence	of air bubbles, an	nd if present, noted	l below?			Y	N
14.	Did the bottles of	riginate from CAS/K	or a branch labor	atory?				\bigcirc	N
15.	Are CWA Micr	obiology samples re	ceived with >1/2	the 24hr. hold tir	me remaining fr	om collection?		¥	
16.	Was C12/Res ne	gative?						Y	—N
Exp	olain any discrep	ancies:		· · · · · · · · · · · · · · · · · · ·					
					<u> </u>				
		· · · · · · · · · · · · · · · · · · ·							
RE	SOLUTION:				-	West and the second	· · · · · · · · · · · · · · · · · · ·		
Sar	nples that require	ed preservation or r	eceived out of te	emperature:					
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials		
-				· , , <u>* , * , ·</u> , · · · · · · · · · · · · · · · ·					
				,	1				

Total Solids

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM

Sample Matrix:

Sediment

Service Request: K0500755

Total Solids

Prep Method: Analysis Method:

Test Notes:

NONE 160.3M

Units: PERCENT

Basis: Wet

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
C13-A	K0500755-006	06/02/2005	06/03/2005	06/07/2005	60.1	
C123-Z	K0500755-007	06/02/2005	06/03/2005	06/07/2005	68.0	

Printed: 06/09/2005 10:20 u:\Stealth\Crystal.rpt\Solids.rpt

Page 1 of 1 SuperSet Reference: W0509160

Appendix64-000045

QA/QC Report

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc

80294/Ash Grove Cement DM

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005

Date Received: 06/03/2005

Date Analyzed: 06/07/2005

Duplicate Sample Summary Total Solids

Prep Method:

Analysis Method:

NONE

Units: PERCENT

Basis: Wet

Test Notes:

160.3M

Duplicate Relative Sample Percent

Result

Sample Name

Lab Code K0500755-006 Result 60.1

Sample

59.9

Result

Average 60.0

Difference

Notes

C13-A

<1

Printed: 06/09/2005 10:20

u:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W0509160

Page 1 of 1

Appendix64-000046

Analytical Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Received: 6/3/2005

Date Collected: 6/2/2005

Total Volatile Solids

Prep Method:

NONE

Analysis Method: 160.4M

Units: PERCENT

Basis: Dry

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
C13-A C123-Z	K0500755-006 K0500755-007	-	-	1 1	NA NA	6/10/2005 6/10/2005	5.06 3.76	

M

Modified for analysis of soil.

MI FA

Approved By:

1A/020597p

K0500755wet.mtl - Sample 6/16/2005

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Date Collected: 6/2/2005

Service Request: K0500755

Date Received: 6/3/2005

Date Extracted: NA

Date Analyzed: 6/10/2005

Duplicate Summary Inorganic Parameters

Sample Name:

C13-A

K0500755-006DUP

Units: PERCENT

Lab Code: Test Notes: Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Total Volatile Solids	NONE	160.4 M	-	5.06	5.18	5.12	2	

MIFE Approved By: _

Date: 6/17/05

DUP/020597p K0500755wet.mol - DUP (NR) 6/16/2005

General Chemistry Parameters

Analytical Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

Date Collected: 06/02/05

Service Request: K0500755

Sample Matrix: Sediment

Date Received: 06/03/05

Carbon, Total Organic

Prep Method:

NONE

Units: PERCENT

Analysis Method: PSEP

Basis: Dry

Test Notes:

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
C13-A	K0500755-006	0.05	0.02	1	NA	06/23/05	1.45	
C123-Z	K0500755-007	0.05	0.02	1	NA	06/23/05	1.26	
Method Blank	K0500755-MB	0.05	0.02	1	NA	06/23/05	ND	

1A/020597p

K0500755WET.AG1 - Sample 06/30/05

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Service Request: K0500755

Date Collected: 06/02/05

Date Received: 06/03/05

Date Extracted: NA

Date Analyzed: 06/23/05

Duplicate Summary Inorganic Parameters

Sample Name:

C13-A

Lab Code:

K0500755-006DUP

Units: PERCENT

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Carbon, Total Organic	NONE	PSEP	0.05	1.45	1.55	1.50	7	

DUP/020597p // K0500755WET.AG1 - DUP 06/30/05

Date: <u>6/20/05</u>

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Service Request: K0500755 Date Collected: 06/02/05

Date Received: 06/03/05

Date Extracted: NA Date Analyzed: 06/23/05

Triplicate Summary Inorganic Parameters

Sample Name:

C13-A

Lab Code: Test Notes:

K0500755-006TRP

Units: PERCENT

Basis: Dry

Duplicate Triplicate Relative Prep Analysis Sample Sample Sample Standard Result Deviation Notes Analyte Method Method Result Result Result MRL Average 4 Carbon, Total Organic NONE **PSEP** 0.05 1.55 1.47 1.49 1.45

Approved By:

DUP/020597p K0500755WET.AGI - TRP 06/30/05

Date: <u>6/30/</u>05

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Service Request: K0500755

Project:

80294/Ash Grove Cement DM Char.

Date Collected: 06/02/05

Sample Matrix:

Date Received: 06/03/05

Sediment

Date Extracted: NA

Matrix Spike Summary

Date Analyzed: 06/23/05

Inorganic Parameters

Sample Name:

C13-A

Prep

Method

Units: PERCENT

Lab Code:

Analyte

K0500755-006MS

Basis: Dry

Test Notes:

CAS

		Percent	
Spiked		Recovery	
Sample	Percent	Acceptance	Result
Result	Recovery	Limits	Notes

Carbon, Total Organic

NONE **PSEP**

Analysis

Method

4.88

Spike

Level

MRL

0.05

1.45 6.49

Sample

Result

103

75-125

Approved By:

MS/020597p K0500755WET.AG1 - MS 66/30/05

Date: $\omega/3\rho/05$

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

LCS Matrix:

Sediment

Service Request: K0500755

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 06/23/05

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K0500755-LCS

Units: PERCENT

Basis: Dry

Test Notes:

CAS Percent Recovery True Percent Acceptance Result Prep **Analysis** Limits **Notes** Analyte Method Method Value Result Recovery Carbon, Total Organic 85-115 NONE **PSEP** 0.75 0.68 91

Approved By:

LCS/020597p K0500755WET.AG1 - LCS 06/30/05 Date:

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorporated

Project:

80294/Ash Grove Cement DM Char.

Service Request: K0500755

Date Collected: NA
Date Received: NA
Date Analyzed: 06/23/05

Carbon, Total Organic PSEP Units: PERCENT

CONTINUING CALIBRATION VERIFICATION (CCV)

	True	Measured	Percent
	Value	Value	Recovery
CCV 1 Result	20.0	19.9	100
CCV 2 Result	20.0	20.0	100
CCV 3 Result	20.0	19.7	99
CCV 4 Result	20.0	19.1	96
CCV 5 Result	20.0	19.8	99

CONTINUING CALIBRATION BLANK (CCB)

		MRL	Blank Value
CCB 1	Result	0.05	ND
CCB 2	Result	0.05	0.04 J
CCB 3	Result	0.05	0.03 J
CCB 4	Result	0.05	ND
CCB 5	Result	0.05	0.04 J

Approved By:

DMBOQCD/042695

Q-CCV.XLT

_Date: <u>6/30/65</u>

10/6/95

Analytical Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorpc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Service Request:

K0500755

Date Collected: Date Received: 6/2/2005

Date Analyzed:

6/3/2005 6/26/2005

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: C13-A

Lab Code:

K0500755-006

Sand Fraction: Dry Weight (Grams)

18.2525

Sand Fraction: Weight Recovered (Grams)

18.2238

Sand Fraction: Percent Recovery

99.8

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel	<-1 Ø	0.1452	0.35
Sand, Very Coarse	-1 to 0 Ø	0.1368	0.33
Sand, Coarse	0 to 1 Ø	1.0549	2.58
Sand, Medium	1 to 2 Ø	6.6326	16.2
Sand, Fine	2 to 3 Ø	4.4463	10.9
Sand, Very Fine	3 to 4 Ø	4.3522	10.6
Silt	4 to 8 Ø	20.3450	49.7
Clay	> 8 Ø	4.5200	11.0
	Total	41.6330	. 102

Approved By:	TUIN	FILL	Date:	6/29/05

Analytical Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorpo

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Service Request:

K0500755

Date Collected:

06/02/05

Date Received: Date Analyzed:

06/03/05 06/26/05

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name:

C13-A

Lab Code:

K0500755-006DUP

Sand Fraction: Dry Weight (Grams)

14.1599

Sand Fraction: Weight Recovered (Grams)

14.0982

Sand Fraction: Percent Recovery

99.6

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel	<-1 Ø	0.0471	0.16
Sand, Very Coarse	-1 to 0 Ø	0.0641	0.22
Sand, Coarse	0 to 1 Ø	0.8489	2.89
Sand, Medium	1 to 2 Ø	5.1961	17.7
Sand, Fine	2 to 3 Ø	3.4902	11.9
Sand, Very Fine	3 to 4 Ø	3.4691	11.8
Silt	4 to 8 Ø	14.3000	48.7
Clay	> 8 Ø	3.6100	12.3
	Total	31.0255	106

Date: 6/29/05 Approved By:

Analytical Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorpc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Service Request:

K0500755

Date Collected: Date Received: 6/2/2005 6/3/2005

Date Analyzed:

6/26/2005

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: C13-A

Lab Code:

K0500755-006TRIP

Sand Fraction: Dry Weight (Grams)

13.1155

Sand Fraction: Weight Recovered (Grams)

13.0623

Sand Fraction: Percent Recovery

99.6

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
	The same of the sa	(Grains)	
Gravel	<-1 Ø	0.0653	0.20
Sand, Very Coarse	-1 to 0 Ø	0.0848	0.27
Sand, Coarse	0 to 1 Ø	0.6620	2.08
Sand, Medium	1 to 2 Ø	4.9411	15.5
Sand, Fine	2 to 3 Ø	3.1052	9.74
Sand, Very Fine	3 to 4 Ø	3.1717	9.95
Silt	4 to 8 Ø	15.2450	47.8
Clay	> 8 Ø	4.2150	13.2
	Total	31.4901	98.7

Approved By:	MYFE	Date:	6/29/05

K0500755wet.rm2 \6/29/2005

Analytical Report

Client:

Parsons Brickerhoff Quade & Douglas, Incorpc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix: Sediment

Service Request:

K0500755

Date Collected:

6/2/2005

Date Received: Date Analyzed:

6/3/2005 6/26/2005

Particle Size Determination

Puget Sound Estuary Program Protocol

Sample Name: C123-Z

Lab Code:

K0500755-007

Sand Fraction: Dry Weight (Grams)

30.6584

Sand Fraction: Weight Recovered (Grams)

30.6299

Sand Fraction: Percent Recovery

99.9

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel	<-1 Ø	0.4505	0.97
Sand, Very Coarse	-1 to 0 Ø	0.4845	1.05
Sand, Coarse	0 to 1 Ø	3.2578	7.03
Sand, Medium	1 to 2 Ø	14.3616	31.0
Sand, Fine	2 to 3 Ø	6.9899	15.1
Sand, Very Fine	3 to 4 Ø	4.2384	9.15
Silt	4 to 8 Ø	13.3550	28.8
Clay	> 8 Ø	3.5650	7.69
	Total	46 7027	101

Approved By:

K0500755wet.rm2 \6/29/2005

Metals

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

Parsons Brickerhoff Quade & Douglas, Inco: Service Request: K0500755

Lab Sample ID.

K0500755-006

K0500755-006D

K0500755-006S

K0500755-007

K0500755-MB

Project No.:

Ash Grove Cement DM Char.

Project Name: 80294

Sample No.

Method Blank

C13-A

C13-AD

C13-AS

C123-Z

				x *
re ICP interelement corrections applied?			Yes/No	YES
re ICP background corrections applied?			Yes/No	YES
If yes-were raw data generated before application of background corrections?			Yes/No	мо
mments:				
gnature:	Date	/	•	

COVER PAGE - IN

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Parsons Brickerhoff Quade & Douglas, Incor Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Date Collected: 06/02/05

Project Name: 80294

Date Received: 06/03/05

Matrix:

Units: MG/KG

Basis: Dry

SEDIMENT

Sample Name: C13-A

Lab Code: K0500755-006

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6020	0.06	0.04	5	6/13/05	6/15/05	0.13		N
Arsenic	6020	0.59	0.10	5	6/13/05	6/28/05	3.97	Π	
Cadmium	6020	0.059	0.008	5	6/13/05	6/28/05	0.552		
Copper	6020	0.12	0.05	5	6/13/05	6/28/05	30.3		
Lead	6020	0.06	0.02	5	6/13/05	6/28/05	29.5		
Mercury	7471A	0.019	0.008	1	6/28/05	6/30/05	0.116		1
Nickel	6020	0.24	0.11	5	6/13/05	6/28/05	21.9		
Silver	6020	0.024	0.002	5	6/13/05	6/15/05	0.162		
Zinc	6020	0.59	0.24	5	6/13/05	6/28/05	120		

% Solids: 60.1

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Parsons Brickerhoff Quade & Douglas, Incor

Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Date Collected: 06/02/05

Date Received: 06/03/05

Project Name: 80294

Matrix:

SEDIMENT

Units: MG/KG

Basis: Dry

Sample Name: C123-Z

Lab Code: K0500755-007

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6020	0.05	0.03	5	6/13/05	6/15/05	0,18		N
Arsenic	6020	0.53	0.08	5	6/13/05	6/28/05	4.81		
Cadmium	6020	0.053	0.007	5	6/13/05	6/28/05	0.382		
Copper	6020	0.11	0.04	5	6/13/05	6/28/05	19.8		
Lead	6020	0.05	0.02	5	6/13/05	6/28/05	14.0		
Mercury	7471A	0.013	0.006	1	6/28/05	6/30/05	0.064		
Nickel	6020	0.21	0.09	5	6/13/05	6/28/05	19.2		
Silver	6020	0.021	0.002	5	6/13/05	6/15/05	0.088		
Zinc	6020	0.53	0.21	5	6/13/05	6/28/05	68.3		

% Solids: 68.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

Parsons Brickerhoff Quade & Douglas, Incor

Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Date Collected:

Project Name: 80294

Date Received:

Matrix:

SEDIMENT

Units: MG/KG

Basis: Dry

Sample Name: Method Blank

Lab Code: K0500755-MB

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6020	0.05	0.03	5	6/13/05	6/15/05	0.03	В	И
Arsenic	6020	0.50	0.08	5	6/13/05	6/28/05	0.08	U	
Cadmium	6020	0.050	0.007	5	6/13/05	6/28/05	0.010	В	
Copper	6020	0.10	0.04	5	6/13/05	6/28/05	0.04	Ū	
Lead	6020	0.05	0.02	5	6/13/05	6/28/05	0.02	U	
Mercury	7471A	0.020	0.009	1	6/28/05	6/30/05	0.009	ַט	
Nickel	6020	0.20	0.09	5	6/13/05	6/28/05	0.09	U	
Silver	6020	0.020	0.002	5	6/13/05	6/15/05	0.003	В	
Zinc	6020	0.50	0.20	5	6/13/05	6/28/05	0.20	U	1

% Solids: 100.0

Comments:

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client:

Parsons Brickerhoff Quade & Douglas, Incc Service Request: K0500755

Project No.: Ash Grove Cement DM

Project Name: 80294

ICV Source: Inorganic Ventures

CCV Source: Various

	Initial	Calibrat	ion		Continu	ing Cal	ibration			
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	Method	
Arsenic	50.0	51.0	102	25.0	25.2	101	25.3	101	6020	
Cadmium	25.0	25.6	102	25.0	24.6	98	24.8	99	6020	
Copper	25.0	25.7	102	25.0	25.5	102	25.6	102	6020	
Lead	50.0	51.3	102	25.0	25.5	102	26.6	106	6020	
Mercury	5.0	5.19	104	5.0	4.89	98	4.83	97	7471A	
Nickel	50.0	50.8	102	25.0	25.8	103	25.9	104	6020	
Zinc	50.0	50.6	101	25.0	24.7	99	24.9	99	6020	

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client:

Parsons Brickerhoff Quade & Douglas, Inco Service Request: K0500755

Project No.: Ash Grove Cement DM

Project Name: 80294

ICV Source:

CCV Source: Various

-	Initial	l Calibra	tion		Continu	ing Cal	ibration			
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	8R(1)	Method	
rsenic			T	25.0	25.5	102	25.3	101	6020	
Cadmium				25.0	25.0	100	25.2	101	6020	
Copper				25.0	25.3	101	24.0	96	6020	
₄ead				25.0	26.6	106	26.7	107	6020	
1ercury				5.0	4.85	97	4.85	97	7471A	
Nickel				25.0	25.2	101	24.3	97	6020	
linc				25.0	24.8	99	24.4	98	6020	

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client:

Parsons Brickerhoff Quade & Douglas, Inco Service Request: K0500755

Project No.: Ash Grove Cement DM

Project Name: 80294

ICV Source:

CCV Source: Various

	Initia	l Calibra	tion		Continu	ing Cal.	ibration		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	Method
Arsenic				25.0	25.4	102	25.7	103	6020
Cadmium				25.0	24.5	98	24.5	98	6020
Copper				25.0	26.2	105	25.9	104	6020
Lead	·			25.0	27.3	109	26.7	107	6020
Nickel				25.0	26.8	107	26.6	106	6020
Zinc	1			25.0	24.8	99	24.7	99	6020

METALS - 2b -CRDL STANDARD FOR AA AND ICP

Client:

Parsons Brickerhoff Quade & Douglas, Incorp Service Request: K0500755

Project No.: Ash Grove Cement

Project Name: 80294

	CRDI Stanc	lard for AA		CRDL Stand	lard fo	r ICP	
	CADE Scalle	TAIU IOI AA	I	nitial		Final	•
Analyte	True	Found %R	True	Found	%R	Found	&R
Arsenic			0.50	0.50	100		
Cadmium			0.02	0.014	67		
Copper			0.10	0.10	99		
Lead			0.02	0.02	97		
Mercury	0.20	0.193 9	7				
Nickel		•	0.20	0.18	89		
Zinc			0.50	0.51	102		

METALS - 3 -BLANKS

Client:

Parsons Brickerhoff Quade & Douglas, Inc Service Request: K0500755

Project No.:

Ash Grove Cemen

Project Name: 80294

Preparation Blank Matrix (soil/water): WATER Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calib. Blank (ug/L)	С	Continuing Calibration Blank (ug/L) 1 C 2 C 3 C C			Method					
Arsenic	0.16	Ü	0.16	Ū	0.16	U	0.16	U			6020
Cadmium	0.014	Ū	0.014	U	0.02	В	0.018	В			6020
Copper	0.08	ט	0.08	U	0.08	U	0.08	U			6020
Lead	0.04	Ū	0.04	U	0.04	U	0.04	U		П	6020
Mercury	0.090	ט	0.090	υ	0.09	U	0.090	U			7471A
Nickel	0.18	Ū	0.18	Ū	0.18	U	0.18	U			6020
Zinc	0.40	Ū	0.40	Ū	0.40	U	0.40	U			6020

METALS - 3 -**BLANKS**

Client:

Parsons Brickerhoff Quade & Douglas, Inc Service Request: K0500755

Project No.:

Ash Grove Cemen

Project Name: 80294

Preparation Blank Matrix (soil/water): WATER Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calib. Blank (ug/L)			в1	ank (ug	/L		~	Preparation Blank		Method
	(-3/-/	С	<u>T</u>	С	2	C	3	С	 С		
Arsenic			0.16	Ü	0.16	U	0.16	U			6020
Cadmium			0.020	В	0.04	В	0.024	В			6020
Copper			0.08	U	0.08	U	0.08	Ü			6020
Lead			0.04	U	0.04	U	0.04	Ü		П	6020
Mercury			0.090	υ							7471A
Nickel			0,18	U	0.18	U	0.18	U			6020
Zinc			0.40	Ū	0.40	U	0.40	Ū			6020

- 4 -

ICP INTERFERENCE CHECK SAMPLE

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Service Request:K0500755

Project No.: Ash Grove Cement DM C

Project Name: 80294

ICP ID Number: PQ-S

ICS Source: Inorganic Ventures

	Tru	e	Initi	al Found		Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	8R	Sol.A	Sol.AB	₽R	
Arsenic		20	0.02	21.0	105				
Cadmium		20	0.537	20.4	102				
Copper		20	0.54	20.6	103				
Lead			0.18	0.17					
Nickel		20	0.43	22.0	110				
Zinc		20	1.06	20.7	104				

- 5a -

SPIKE SAMPLE RECOVERY

Client:

Matrix:

Parsons Brickerhoff Quade & Douglas,

Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Units: mg/kg

Project Name: 80294

Basis: Dry

SEDIMENT

% Solids: 60.1

Sample Name: C13-AS

Lab Code: K0500755-006S

Analyte	Control Limit %R	Spike Result	Sample Result	Spike Added	₽R	Q	Method
Antimony	70 - 130	29.0	0.13	117	25	N	6020
Arsenic	70 - 122	113	3.97	118	92		6020
Cadmium	77 - 122	12.1	0.552	11.8	97		6020
Copper	50 - 142	94.1	30.3	59.0	108		6020
Lead	74 - 117	157	29.5	118	108		6020
Mercury	61 - 129	0.538	0.116	0.458	92		7471A
Nickel	73 - 121	147	21.9	118	106		6020
Silver	70 - 130	11.4	0.162	11.7	96	Ì	6020
Zinc	51 - 153	247	120	118	108		6020

An empty field in the Control Limit column indicates the control limit is not applicable.

- 5b -

POST DIGEST SPIKE SAMPLE RECOVERY

Client:

Parsons Brickerhoff Quade & Douglas, Inco Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Units: ug/L

Project Name: 80294

Matrix:

SEDIMENT

Sample Name:

C13-AA

Lab Code: K0500755-006A

Analyte	Control Limit %R	Spiked Sample C	Sample Result (SR)	Spike Added (SA)	%R (2 м
Antimonv	75-125	9.56	0.22	10.0	93	MS
Arsenic	75-125	22.9	6.68	20.0	81	MS
Cadmium	75-125	18.6	0.928	20.0	88	MS
Copper	75-125	66.4	51.0	20.0	77	MS
Lead	75-125	71.7	49.7	20.0	110	MS
Nickel	75-125	54.5	36.8	20.0	88	MS
Silver	75-125	9.44	0.272	10.0	92	MS
Zinc	75-125	241	203	50.0	78	MS

omments:

-6-

DUPLICATES

Client:

Parsons Brickerhoff Quade & Douglas, Inco Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Units: mg/kg

Project Name: 80294

Basis: Dry

Matrix:

SEDIMENT

% Solids: 60.1

Sample Name: C13-AD

Lab Code: K0500755-006D

Analyte	Control Limit(%)	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Antimony		0.13		0.12		5		6020
Arsenic	30	3.97		3.79		5	j	6020
Cadmium	30	0.552		0.517		7	j	6020
Copper	30	30.3		27.6		9		6020
Lead	30	29.5		25.8		13		6020
Mercury	30	0.116		0.089		26		7471A
Nickel	30	21.9		20.6	1	6		6020
Silver	30	0.162		0.192		1.7		6020
Zinc	30	120	i i	108		11		6020

- 7 -

LABORATORY CONTROL SAMPLE

Client:

Parsons Brickerhoff Quade & Douglas, Incor Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Project Name: 80294

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source: ERA Lot #246

Analyte	Aque	Aqueous mg/L			Solid (mg/kg)					
	True	Found	%R	True	Found C	Limi	ts	8R		
Arsenic			Ī Ī	187	187	139	235	100		
Cadmium	1			67.9	65.8	52.0	83.6	97		
Copper				91.3	91.7	74.8	108	100		
Lead				125	141	95.2	155	113		
Mercury				1.49	1.45	0.852	2.12	97		
Nickel				78.0	82.0	61.1	94.9	105		
Zinc				283	248	219	347	88		

-9-

ICP SERIAL DILUTIONS

Client:

Parsons Brickerhoff Quade & Douglas, In Service Request: K0500755

Project No.:

Ash Grove Cement DM C

Units: ug/L

Project Name:

80294

Sample Name: C13-AL

Lab Code: K0500755-006L

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S)	% Differ-	Q	Me thod
Antimony	0.22	0.30 U			6020
Arsenic	6.68	8.24	23		6020
Cadmium	0.928	1.07	15	E	6020
Copper	51.0	67.8	33	E	6020
Lead	49.7	51.9	4		6020
Nickel	36.8	46.7	27	E	6020
Silver	0.272	0.344	26	E	6020
Zinc	203	278	.38	E	6020

-10-

METHOD DETECTION LIMITS

Parsons Brickerhoff Quade & Douglas, Inco: Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Project Name: 80294

ICP/ICP-MS ID #:

GFAA ID #:

AA ID #: CETAC-1

Analyte	Wave- length	Back- ground	MRL (ug/L)	MDL (ug/L)	Method
Mercury	253.70	BD	0.200	0.090	7471A

Comments	

-10-

METHOD DETECTION LIMITS

Client:

Parsons Brickerhoff Quade & Douglas, Incor Service Request: K0500755

Project No.: Ash Grove Cement DM Char.

Project Name: 80294

ICP/ICP-MS ID #: PQ-S

GFAA ID #:

AA ID #:

Analyte	Mass	Back- ground	MRL (ug/L)	MDL (ug/L)	Method
Arsenic	75		1.00	0.16	6020
Cadmium	111		0.100	0.014	6020
Copper	65		0.20	0.08	6020
Lead	208		0.10	0.04	6020
Nickel	60		0.40	0.18	6020
Zinc	66		1.00	0.40	6020

mments	

-12-

ICP LINEAR RANGES (QUARTERLY)

Parsons Brickerhoff Quade & Douglas, Ir Service Request: K0500755

Project No.: Ash Grove Cement DM Ch

Project Name: 80294

ICP ID Number:

Excell ICPMS

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	Method
Antimony	15.00	500.0	6020
Silver	15.00	300.0	6020

Comments:	

-12-

ICP LINEAR RANGES (QUARTERLY)

Parsons Brickerhoff Quade & Douglas, In Service Request: K0500755

Project No.: Ash Grove Cement DM Ch

Project Name: 80294

ICP ID Number:

PQ-S

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	Method
Arsenic	15.00	500.0	6020
Cadmium	15.00	500.0	6020
Copper	15.00	300.0	6020
Lead	15.00	500.0	6020
Nickel	15.00	300.0	6020
Zinc	15.00	400.0	6020

Comments:		 	 ······································

METALS - 13 -

PREPARATION LOG

Client:

Parsons Brickerhoff Quade & Douglas, Inc Service Request: K0500755

Project No.: Ash Grove Cement DM Char

Project

80294

Method: CV

Lab Code	Preparation Date	Preparation Method	Initial (mL or grams)	Final Volume (mL)
K0500755-007	6/28/05	METHOD	2.27	100
K0500755-006	6/28/05	METHOD	1.80	100
K0500755-006D	6/28/05	METHOD	1.74	100
K0500755-0068	6/28/05	METHOD	1.82	100
LCSS	6/28/05	METHOD	0.509	100
K0500755-MB	6/28/05	METHOD	1.00	100

METALS - 13 -PREPARATION LOG

Client:

Parsons Brickerhoff Quade & Douglas, Inc Service Request: K0500755

Project No.: Ash Grove Cement DM Char

Project

80294

Method:

MS

Lab Code	Preparation Date	Preparation Method	Initial (mL or grams)	Final Volume (mL)
K0500755-007	6/13/05	EPA 3050B	1.40	100
K0500755-006	6/13/05	EPA 3050B	1.40	100
K0500755-006D	6/13/05	EPA 3050B	1.40	100
K0500755-006S	6/13/05	EPA 3050B	1.41	100
LCSS	6/13/05	EPA 3050B	1.00	100
K0500755-MB	6/13/05	EPA 3050B	1.00	100
W0500855 008	1		1 40	100
K0500755-007	6/13/05	EPA 3050B	1.40	100
K0500755-006	6/13/05	EPA 3050B	1.40	100
K0500755-006D	6/13/05	EPA 3050B	1,40	100
K0500755-006s	6/13/05	EPA 3050B	1.42	100
LCSS	6/13/05	EPA 3050B	1.00	100
K0500755-MB	6/13/05	EPA 3050B	1.00	100

Organochlorine Pesticides EPA Method 8081

Organic Analysis: <u>Organochlorine Pesticides</u>

Summary Package

Sample and QC Results

Client:
Project:

Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Service Request:

K0500755

Cover Page - Organic Analysis Data Package Organochlorine Pesticides

		Date	Date
Sample Name	Lab Code	Collected	Received
C13-A	K0500755-006	06/02/2005	06/03/2005
C123-Z	K0500755-007	06/02/2005	06/03/2005
C13-AMS	KWG0509789-1	06/02/2005	06/03/2005
C13-ADMS	KWG0509789-2	06/02/2005	06/03/2005

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: M. Howeverleyn	Name: M. Henduch(Er-
- little C	- Carritet

Cover Page - Organic

Page 1 of 1

SuperSet Reference:

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005

Date Received: 06/03/2005

Organochlorine Pesticides

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method:

EPA 3540C

Analysis Method:

8081A

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
gamma-BHC (Lindane)	ND U	1.0	0.37	l	06/15/05	07/13/05	KWG0509789	
Heptachlor	ND U	1.0	0.29	.1	06/15/05	07/13/05	KWG0509789	
Aldrin	ND U	1.0	0.16	1	06/15/05	07/13/05	KWG0509789	
gamma-Chlordanc†	ND Ui	1.0	1.0	1	06/15/05	07/13/05	KWG0509789	
alpha-Chlordane	ND U	1.0	0.19	1	06/15/05	07/13/05	KWG0509789	
Dieldrin	ND Ui	1.0	1.0	1	06/15/05	07/13/05	KWG0509789	
4,4'-DDE	5.4 P	1.0	0.22	1	06/15/05	07/13/05	KWG0509789	
4,4'-DDD	3.7	1.0	0.090	1	06/15/05	07/13/05	KWG0509789	
4,4'-DDT	2.5 P	1.0	0.15	1	06/15/05	07/13/05	KWG0509789	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	73	38-125	07/13/05	Acceptable	
Decachlorobiphenyl	72	26-166	07/13/05	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

 $u: \S tealth \Crvstal.rpt \Form \Im.rpt$

Comments:

Printed: 07/18/2005 16:21:35

Merged

Form 1A - Organic

SuperSet Reference:

Page RR49763

1 of 1

Analytical Results

lient:

Parsons Brickerhoff Quade & Douglas, Inc

roject:

80294/Ash Grove Cement DM Char.

ample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005

Date Received: 06/03/2005

Organochlorine Pesticides

ample Name:

C123-Z

ab Code:

K0500755-007

extraction Method:

EPA 3540C

malysis Method:

Basis: Dry Level: Low

Units: ug/Kg

8081A

				Dilution	Date	Date	Extraction	
analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
;amma-BHC (Lindane)	ND U	1.0	0.33	1	06/15/05	07/13/05	KWG0509789	
Teptachlor	ND Ui	1.0	1.0	1	06/15/05	07/13/05	KWG0509789	
Aldrin	ND - Ui	1.0	0.16	1	06/15/05	07/13/05	KWG0509789	
;amma-Chlordane†	0.55 J	1.0	0.089	1	06/15/05	07/13/05	KWG0509789	
ılpha-Chlordane	ND U	1.0	0.17	1	06/15/05	07/13/05	KWG0509789	
Dieldrin	ND Ui	1.0	1.0	1	06/15/05	07/13/05	KWG0509789	
,4'-DDE	2.9	1.0	0.20	1	06/15/05	07/13/05	KWG0509789	
1,4'-DDD	1.6	1.0	0.080	1	06/15/05	07/13/05	KWG0509789	
,4'-DDT	1.2	1.0	0.14	. 1	06/15/05	07/13/05	KWG0509789	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
letrachloro-m-xylene	70	38-125	07/13/05	Acceptable	
Decachlorobiphenyl	73	26-166	07/13/05	Acceptable	

Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/18/2005 16:21:37

 $u:\Stealth\Crystal.rpt\Form\Im.rpt$

Merged

Form 1A - Organic 200

SuperSet Reference:

Page

RR49763

1 of 1

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: NA

Date Received: NA

Organochlorine Pesticides

Sample Name:

Method Blank

Lab Code:

KWG0509789-4

Extraction Method:

EPA 3540C

8081A

Analysis Method:

Basis: Dry

Units: ug/Kg

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
gamma-BHC (Lindane)	ND U	0.61	0.22	1	06/15/05	07/13/05	KWG0509789	
Heptachlor	ND U	0.61	0.17	1	06/15/05	07/13/05	KWG0509789	
Aldrin	ND U	0.61	0.096	1	06/15/05	07/13/05	KWG0509789	
gamma-Chlordane†	ND U	0.61	0.060	1	06/15/05	07/13/05	KWG0509789	
alpha-Chlordane	ND U	0.61	0.11	1	06/15/05	07/13/05	KWG0509789	
Dieldrin	ND U	0.61	0.046	1.	06/15/05	07/13/05	KWG0509789	
4,4'-DDE	ND U	0.61	0.13	1	06/15/05	07/13/05	KWG0509789	-
4,4'-DDD	ND U	0.61	0.054	- 1	06/15/05	07/13/05	KWG0509789	
4,4'-DDT	ND U	0.61	0.089	1	06/15/05	07/13/05	KWG0509789	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tetrachloro-m-xylene	72	38-125	07/13/05	Acceptable	
Decachlorobiphenyl	76	26-166	07/13/05	Acceptable	

† Analyte Comments

gamma-Chlordane

For this analyte (CAS Registry No. 5103-74-2), USEPA has corrected the name to be beta-Chlordane, also known as trans-Chlordane.

Comments:

Printed: 07/18/2005 16:21:39

n:\Stealth\Crustal mt\Form l m mt

Merged

Form IA - Organic

SuperSet Reference: RR49763

Page 1 of 1

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Surrogate Recovery Summary Organochlorine Pesticides

Extraction Method: EPA 3540C Analysis Method:

8081A

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
C13-A	K0500755-006	73	72
C123-Z	K0500755-007	70	73
Method Blank	KWG0509789-4	72	76
C13-AMS	KWG0509789-1	68	69
C13-ADMS	KWG0509789-2	69	67
Lab Control Sample	KWG0509789-3	76	78

Surrogate Recovery Control Limits (%)

Surl = Tetrachloro-m-xylene 38-125 Sur2 = Decachlorobiphenyl 26-166

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/18/2005 16:21:43

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic 004

SuperSet Reference:

Page 1 of 1

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Extracted: 06/15/2005

Date Analyzed: 07/13/2005

Matrix Spike/Duplicate Matrix Spike Summary **Organochlorine Pesticides**

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method: Analysis Method:

EPA 3540C

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0509789

C13-AMS KWG0500780.1

C13-ADMS KW/G0509789-2

	Sample		Matrix Spike	1		cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
gamma-BHC (Lindane)	ND	15.1	20.0	75	14.7	20.0	74	45-153	3	50
Heptachlor	ND	13.7	20.0	68	14.0	20.0	70	35-151	3	50
Aldrin	ND	13.4	20.0	67	13.3	20.0	67	39-143	1	50
gamma-Chlordane	ND	14.4	20.0	72	14.9	20.0	74	33-161	3	50
alpha-Chlordane	ND	13.3	20.0	66	13.5	20.0	67	40-140	2	50
Dieldrin	ND	13.0	20.0	65	12.7	20.0	64	48-142	2	50
4,4'-DDE	5.4	17.9	20.0	62	18.6	20.0	66	35-146	4	50
4,4'-DDD	3.7	18.6	20.0	75	16.9	20.0	66	32-156	9	50
4,4' - DDT	2.5	17.0	20.0	73	16.7	20.0	71	31-161	2	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/18/2005 16:21:46

11 \Stealth\Crustal mt\Horm3DMS rnt

Form 3A - Organic

Page 1 of 1

RR49763 SuperSet Reference:

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

'roject:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Extracted: 06/15/2005

Date Analyzed: 07/13/2005

Lab Control Spike Summary Organochlorine Pesticides

Extraction Method: EPA 3540C

Analysis Method:

8081A

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0509789

Lab Control Sample KWG0509789-3 Lab Control Spike

				%Rec
Analyte Name	Result	Expected	%Rec	Limits
gamma-BHC (Lindane)	18.3	20.0	91	70-125
Heptachlor	16.7	20.0	84	69-120
Aldrin	16.4	20.0	82	67-120
gamma-Chlordane	16.7	20.0	83	74-117
₁lpha-Chlordane	16.9	20.0	84	72-116
Dieldrin	16.5	20.0	83	74-121
1,4'-DDE	17.3	20.0	87	73-126
1,4'-DDD	17.2	20.0	86	74-130
4,4'-DDT	17.6	20.0	88	75-132

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/18/2005 16:21:49

u:\Stealth\Crystal.rpt\Form3LCS.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference:

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Extracted: 06/15/2005 **Date Analyzed:** 07/13/2005

Time Analyzed: 04:17

Method Blank Summary Organochlorine Pesticides

Sample Name: Lab Code:

Method Blank

KWG0509789-4

Extraction Method: Analysis Method:

EPA 3540C 8081A

File ID: J:\GC23\DATA\071205\0712F025.D

Instrument ID: GC23

Level: Low

Extraction Lot: KWG0509789

This Method Blank applies to the following analyses:

			pate	1 ime
Sample Name	Lab Code	File ID	Analyzed	Analyzed
Lab Control Sample	KWG0509789-3	J:\GC23\DATA\071205\0712F026.D	07/13/05	04:43
C13-A	K0500755-006	J:\GC23\DATA\071205\0712F027.D	07/13/05	05:09
C13-AMS	KWG0509789-1	J:\GC23\DATA\071205\0712F028.D	07/13/05	05:35
C13-ADMS	KWG0509789-2	J:\GC23\DATA\071205\0712F029.D	07/13/05	06:01
C123-Z	K0500755-007	J:\GC23\DATA\071205\0712F030.D	07/13/05	06:28

Printed: 07/18/2005 16:21:54

ur\Stealth\Crvstal.rot\Form4mb.rot

Form 4A - Organic

Page 1 of 1

SuperSet Reference:

QA/QC Report

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Extracted: 06/15/2005

Date Analyzed: 07/13/2005 Time Analyzed: 04:43

Lab Control Sample Summary Organochlorine Pesticides

Sample Name:

Lab Control Sample

Lab Code:

KWG0509789-3

EPA 3540C

Extraction Method: Analysis Method:

8081A

File ID: J:\GC23\DATA\071205\0712F026.D

Instrument ID: GC23

Level: Low

Extraction Lot: KWG0509789

This Lab Control Sample applies to the following analyses:

			Date	Time
Sample Name	Lab Code	File ID	Analyzed	Analyzed
Method Blank	KWG0509789-4	J:\GC23\DATA\071205\0712F025.D	07/13/05	04:17
C13-A	K0500755-006	J:\GC23\DATA\071205\0712F027,D	07/13/05	05:09
C13-AMS	KWG0509789-1	J:\GC23\DATA\071205\0712F028.D	07/13/05	05:35
C13-ADMS	KWG0509789-2	J:\GC23\DATA\071205\0712F029.D	07/13/05	06:01
C123-Z	K0500755-007	J:\GC23\DATA\071205\0712F030.D	07/13/05	06:28

Printed: 07/18/2005 16:21:58

 $x:\Stealth\Crystal.rpt\Form4LCS.rpt$

Form 4B - Organic 000

SuperSet Reference:

Page RR49763

1 of 1

QA/QC Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Extracted: 06/15/2005

Extraction Prep Log Organochlorine Pesticides

Extraction Method: EPA 3540C Analysis Method:

8081A

Extraction Lot: KWG0509789

Level: Low

Sample Name	Lab Code	Date Collected	Date Received	Sample Amount	Final Volume	% Solids	Note
C13-A					41		11000
	K0500755-006	06/02/05	06/03/05	33.30g	4ml	60.1	
C123-Z	K0500755-007	06/02/05	06/03/05	29.46g	4ml	68.0	
Method Blank	KWG0509789-4	NA	NA	33.32g	4ml	NA	
C13-AMS	KWG0509789-1	06/02/05	06/03/05	33.32g	4mI	60.1	
C13-ADMS	KWG0509789-2	06/02/05	06/03/05	33.31g	4ml	60.1	
Lab Control Sample	KWG0509789-3	NA	NA	20.00g	4ml	NA	

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

Printed: 07/18/2005 16:23:11

Form 9 - Organic

SuperSet Reference:

RR49763

Page 1 of 1

313

Confirmation Results

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Collected: 06/02/2005

Date Received: 06/03/2005 Date Extracted: 06/15/2005

Organochlorine Pesticides

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method:

EPA-3540C

Analysis Method:

8081A

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	MRL	MDL	Primary Result	Confirmation Result	%D	Q	Dilution Factor	Date Analyzed
1,4'-DDE	1.0	0.22	5.4	3.0	57.1	P	1	07/13/05
1,4'-DDD	1.0	0.090	3.7	3.5	5.6		1.	07/13/05
4,4'-DDT	1.0	0.15	. 2.5	3.8	41.3	P	1	07/13/05

Printed: 07/18/2005 16:23:11

u:\Stealth\Crystal.rpt\Form10.rpt

Form 10 - Organic

SuperSet Reference:

RR49763

Page

1 of 1

Confirmation Results

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 **Date Collected:** 06/02/2005 **Date Received:** 06/03/2005

Date Extracted: 06/15/2005

Organochlorine Pesticides

Sample Name:

C123-Z

Lab Code:

K0500755-007

Extraction Method: Analysis Method:

EPA 3540C 8081A Units: ug/Kg

Basis: Dry Level: Low

			Primary	Confirmation			Dilution	Date
Analyte Name	MRL	MDL	Result	Result	%D	Q	Factor	O7/13/05 07/13/05 07/13/05
gamma-Chlordane	1.0	0.089	0.55	0.68	21.1	J	1	07/13/05
4,4'-DDE	1.0	0.20	2.9	2.1	32.0		1	07/13/05
4,4'-DDD	1.0	0.080	1.6	1.5	6.5		1	07/13/05
4,4'-DDT	1.0	0.14	1.2	1.3	8.0		1	07/13/05

Printed: 07/18/2005 16:23:12

u:\Stealth\Crystal.rpt\Form10.rpt

Form 10 - Organic

Page

SuperSet Reference: RR49763

1 of 1

Polychlorinated Biphenyls PCB's EPA Method 8082

Organic Analysis: Polychlorinated Biphenyls (PCBs)

Summary Package

Sample and QC Results

Client: Project:

Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Service Request:

K0500755

Cover Page - Organic Analysis Data Package Polychlorinated Biphenyls (PCBs)

Sample Name	Lab Code	Date Collected	Date Received
C13-A	K0500755-006	06/02/2005	06/03/2005
C123-Z	K0500755-007	06/02/2005	06/03/2005
C123-ZMS	KWG0509790-1	06/02/2005	06/03/2005
C123-ZDMS	KWG0509790-2	06/02/2005	06/03/2005

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature 7805

Name: Tant 1 Hestern

Title: 5044457

Cover Page - Organic

Page 1 of 1

539

SuperSet Reference:

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005

Date Received: 06/03/2005

Polychlorinated Biphenyls (PCBs)

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: ug/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	10	2.2	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1221	ND U	20	2.2	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1232	ND U	10	2.2	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1242	ND U	10	2,2	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1248	100	10	2.2	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1254	72	10	2.2	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1260	52	10	2.2	1	06/15/05	06/27/05	KWG0509790	Marine William

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	90	20-161	06/27/05	Acceptable	

Comments:

Printed: 07/07/2005 11:22:19

 $u: \label{lem:crystal.rpt} In the constant of the constant o$

Merged

Form 1A - Organic E10

SuperSet Reference:

Page 1 of 1

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 **Date Collected:** 06/02/2005

Date Received: 06/03/2005

Polychlorinated Biphenyls (PCBs)

Sample Name:

C123-Z

Lab Code:

K0500755-007

Extraction Method: Analysis Method:

EPA 3540C

8082

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	10	2.0	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1221	ND U	20	2.0	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1232	ND U	10	2.0	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1242	ND U	10	2.0	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1248	13	10	2.0	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1254	24	10	2.0	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1260	17	10	2.0	1	06/15/05	06/27/05	KWG0509790	** - Committee of the C

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	72	20-161	06/27/05	Acceptable	

Comments:

Printed: 07/07/2005 11:22:20

u:\Stealth\Crystal.rpt\Form\m.rpt

Merged

Form 1A - Organic 541

SuperSet Reference:

Page 1 of 1

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project: Sample Matrix: 80294/Ash Grove Cement DM Char.

Sediment

Service Request: K0500755

Date Collected: NA Date Received: NA

Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

KWG0509790-4

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	6.1	1.3	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1221	ND U	13	1.3	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1232	ND U	6.1	1.3	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1242	ND U	6.1	1.3	1	06/15/05	06/27/05	KWG0509790	***************************************
Aroclor 1248	ND U	6.1	1.3	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1254	ND U	6.1	1.3	1	06/15/05	06/27/05	KWG0509790	
Aroclor 1260	ND U	6.1	1.3	1	06/15/05	06/27/05	KWG0509790	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	85	20-161	06/27/05	Acceptable

Comments:	

Printed: 07/07/2005 11:22:21

Merged

Form 1A - Organic 5/12

SuperSet Reference:

1 of 1 Page

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Extraction Method:

EPA 3540C

Analysis Method:

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1
C13-A	K0500755-006	90
C123-Z	K0500755-007	72
Method Blank	KWG0509790-4	85
C123-ZMS	KWG0509790-1	73
C123-ZDMS	KWG0509790-2	73
Lab Control Sample	KWG0509790-3	77

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

20-161

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/07/2005 11:22:25

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic 543

SuperSet Reference:

Page 1 of

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Extracted: 06/15/2005

Date Analyzed: 06/27/2005

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

C123-Z

Lab Code:

K0500755-007

Extraction Method: Analysis Method:

EPA 3540C

8082

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0509790

C123-ZMS

C123-ZDMS

KWG0500700.1

KWG0509790-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Aroclor 1016	ND	152	200	76	144	199	72	33-155	5	50
Aroclor 1260	17	191	200	87	182	199	83	36-161	4	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/07/2005 11:22:28

Form 3A - Organic

SuperSet Reference:

Page 1 of 1

Appendix64-000104

QA/QC Report

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 **Date Extracted:** 06/15/2005

Date Analyzed: 06/27/2005

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: Analysis Method:

EPA 3540C

8082

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0509790

Lab Control Sample KWG0509790-3

	Lad	Lab Control Spike			
Analyte Name	Result	Expected	%Rec	%Rec Limits	
Aroclor 1016	148	200	74	43-141	
Aroclor 1260	161	200	81	50-145	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/07/2005 11:22:31

 $u:\Stealth\Crystal.rpt\Form3LCS.rpt$

Form 3C - Organic

SuperSet Reference:

Page 1 of 1

545

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Extracted: 06/15/2005 **Date Analyzed:** 06/27/2005

Time Analyzed: 17:34

Method Blank Summary Polychlorinated Biphenyls (PCBs)

Sample Name: Lab Code:

Method Blank

File ID: J:\GC09\DATA\062705.B\0627F012.D

KWG0509790-4

Instrument ID: GC09.i

Analysis Method:

Extraction Method: EPA 3540C

8082

Level: Low

Extraction Lot: KWG0509790

This Method Blank applies to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed	Time Analyzed
Lab Control Sample	KWG0509790-3	J:\GC09\DATA\062705.B\0627F013.D	06/27/05	18:00
C13-A	K0500755-006	J:\GC09\DATA\062705.B\0627F014.D	06/27/05	18:26
C123-Z	K0500755-007	J:\GC09\DATA\062705.B\0627F015.D	06/27/05	18:52
C123-ZMS	KWG0509790-1	J:\GC09\DATA\062705.B\0627F016.D	06/27/05	19:19
C123-ZDMS	KWG0509790-2	J:\GC09\DATA\062705.B\0627F017.D	06/27/05	19:45

Printed: 07/07/2005 11:22:36 u:\Stealth\Crystal.rpt\Form4mb.rpt

Form 4A - Organic 516

SuperSet Reference:

Page 1 of 1 RR49419

Appendix64-000106

QA/QC Report

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Extracted: 06/15/2005 **Date Analyzed:** 06/27/2005 Time Analyzed: 18:00

Lab Control Sample Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

Lab Control Sample

File ID: J:\GC09\DATA\062705.B\0627F013.D

Lab Code:

Instrument ID: GC09.i

Extraction Method:

KWG0509790-3

Level: Low

Analysis Method:

EPA 3540C 8082

Extraction Lot: KWG0509790

This Lab Control Sample applies to the following analyses:

Date	Time
Analyzed	Analyzed
\\062705.B\\0627F012.D \\06/27/05	17:34
\\062705.B\\0627F014.D \\06/27/05	18:26
\\062705.B\\0627F015.D \\06/27/05	18:52
\\062705.B\\0627F016.D \qquad \qquad \qquad \qquad \qquad \qqqq \qqq \qqqq	19:19
\\062705.B\\0627F017.D \qquad 06/27/05	19:45
	Analyzed A\062705.B\0627F012.D 06/27/05 A\062705.B\0627F014.D 06/27/05 A\062705.B\0627F015.D 06/27/05 A\062705.B\0627F016.D 06/27/05

Printed: 07/07/2005 11:22:40 u:\Stealth\Crystal.rpt\Form4LCS.rpt

Form 4B - Organic 547

SuperSet Reference:

Page 1 of 1

RR49419

Appendix64-000107

QA/QC Results

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Extracted: 06/15/2005

Extraction Prep Log Polychlorinated Biphenyls (PCBs)

Extraction Method: Analysis Method:

EPA 3540C

8082

Extraction Lot: KWG0509790

Level: Low

Sample Name	Lab Code	Date Collected	Date Received	Sample Amount	Final Volume	% Solids	Note
C13-A	K0500755-006	06/02/05	06/03/05	33.30g	4ml	60.1	
C123-Z	K0500755-007	06/02/05	06/03/05	29.46g	4ml	68.0	
Method Blank	KWG0509790-4	NA	NA	33.30g	4ml	NA	
C123-ZMS	KWG0509790-1	06/02/05	06/03/05	29.47g	4ml	68.0	
C123-ZDMS	KWG0509790-2	06/02/05	06/03/05	29.49g	4ml	68.0	
Lab Control Sample	KWG0509790-3	NA	NA	20.00g	4ml	NA	

Results flagged with an asterisk (*) indicate the holding time was exceeded for the analysis

Printed: 07/07/2005 11:23:24 $u:\Stealth\Crystal.rpt\Form9l.rpt$

Form 9 - Organic ちらつ

Page 1 of 1 RR49419 SuperSet Reference:

Appendix64-000108

Confirmation Results

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc

Sample Matrix:

Sediment

80294/Ash Grove Cement DM Char.

Service Request: K0500755 Date Collected: 06/02/2005 **Date Received:** 06/03/2005

Date Extracted: 06/15/2005

Polychlorinated Biphenyls (PCBs)

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method: EPA 3540C

Analysis Method:

8082

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	MRL	MDL	Primary Result	Confirmation Result	%D	Q	Dilution Factor	Date Analyzed
Aroclor 1248	10	2.2	100	93	7.3		1	06/27/05
Aroclor 1254	10	2.2	72	66	8.7		1	06/27/05
Aroclor 1260	10	2.2	52	41	23.7		1	06/27/05

Printed: 07/07/2005 11:23:24 u:\Stealth\Crystal.rpt\Form10.rpt

Form 10 - Organic 563

SuperSet Reference:

RR49419

Page 1 of 1

Confirmation Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005 **Date Received:** 06/03/2005

Date Extracted: 06/15/2005

Polychlorinated Biphenyls (PCBs)

Sample Name:

C123-Z

Lab Code:

K0500755-007

Extraction Method: Analysis Method:

EPA 3540C

8082

Units: ug/Kg

Basis: Dry

Level: Low

Analyte Name	MRL	MDL	Primary Result	Confirmation Result	%D	Q	Dilution Factor	Date Analyzed
Aroclor 1248	10	2.0	13	13	0.0		1	06/27/05
Aroclor 1254	10	2.0	24	20	18.2		1	06/27/05
Aroclor 1260	10	2.0	17	15	12.5		1	06/27/05

Printed: 07/07/2005 11:23:25

 $u:\Stealth\Crystal.rpt\Form10.rpt$

Form 10 - Organic 564

SuperSet Reference:

Page 1 of 1

RR49419

Semi-Volatile Organic Compounds EPA Method 8270C

Organic Analysis: Semi-Volatile Organic Compounds by GC/MS

Summary Package

Sample and QC Results

Client:
Project:

Parsons Brickerhoff Quade & Douglas, Inc 80294/Ash Grove Cement DM Char.

Service Request:

K0500755

Cover Page - Organic Analysis Data Package Semi-Volatile Organic Compounds by GC/MS

		Date	Date
Sample Name	Lab Code	Collected	Received
C13-A	K0500755-006	06/02/2005	06/03/2005
C123-Z	K0500755-007	06/02/2005	06/03/2005
C123-ZMS	KWG0509114-1	06/02/2005	06/03/2005
C123-ZDMS	KWG0509114-2	06/02/2005	06/03/2005

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Name: <u>Cr. 1 Daysor</u>

Title: SUM Superise

Cover Page - Organic

Page 1 of 1

SuperSet Reference:

RR49357

Analytical Results

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc

Sample Matrix:

80294/Ash Grove Cement DM Char.

Sediment

Date Collected: 06/02/2005

Date

Service Request: K0500755

Date Received: 06/03/2005

Semi-Volatile Organic Compounds by GC/MS

Dilution

Date

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Extraction

Analysis Method:

8270C

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	ND	U	250	32	10	06/08/05	06/26/05	KWG0509114	
1,3-Dichlorobenzene	ND	U	84	27	10	06/08/05	06/26/05	KWG0509114	
1,4-Dichlorobenzene	ND	U	. 84	32	10	06/08/05	06/26/05	KWG0509114	
1,2-Dichlorobenzene	ND	U	84	22	10	06/08/05	06/26/05	KWG0509114	
Benzyl Alcohol	ND	U	84	62	10	06/08/05	06/26/05	KWG0509114	
2-Methylphenol	ND	U	84	57	10	06/08/05	06/26/05	KWG0509114	
Hexachloroethane	ND	U	84	37	10	06/08/05	06/26/05	KWG0509114	
4-Methylphenol†	ND	U	84	49	10	06/08/05	06/26/05	KWG0509114	
2,4-Dimethylphenol	ND	U	420	92	10	06/08/05	06/26/05	KWG0509114	
Benzoic Acid	ND	U	1700	1600	10	06/08/05	06/26/05	KWG0509114	
1,2,4-Trichlorobenzene	ND	U	84	25	10	06/08/05	06/26/05	KWG0509114	
Naphthalene	150	D	84	22	10	06/08/05	06/26/05	KWG0509114	
Hexachlorobutadiene	ND		84	24	10	06/08/05	06/26/05	KWG0509114	
2-Methylnaphthalene	51	JD	84	20	10	06/08/05	06/26/05	KWG0509114	
Acenaphthylene	160	D	84	24	10	06/08/05	06/26/05	KWG0509114	
Dimethyl Phthalate	ND	U	84	30	10	06/08/05	06/26/05	KWG0509114	
Acenaphthene	49	ЛD	84	17	10	06/08/05	06/26/05	KWG0509114	
Dibenzofuran	ND	U	84	22	10	06/08/05	06/26/05	KWG0509114	
Fluorene	57	ЛD	84	29	10	06/08/05	06/26/05	KWG0509114	
Diethyl Phthalate	ND	U	84	59	10	06/08/05	06/26/05	KWG0509114	
N-Nitrosodiphenylamine	ND	U	84	37	10	06/08/05	06/26/05	KWG0509114	
Hexachlorobenzene	ND	U	84	35	10	06/08/05	06/26/05	KWG0509114	
Pentachlorophenol	ND	U	840	150	10	06/08/05	06/26/05	KWG0509114	
Phenanthrene	500	D	84	22	10	06/08/05	06/26/05	KWG0509114	
Anthracene	150	D	84	24	10	06/08/05	06/26/05	KWG0509114	
Di-n-butyl Phthalate	ND	U	84	44	10	06/08/05	06/26/05	KWG0509114	
Fluoranthene	2500	D	84	37	10	06/08/05	06/26/05	KWG0509114	
Pyrene	3100	D	84	22	10	06/08/05	06/26/05	KWG0509114	
Butyl Benzyl Phthalate	ND	U	84	25	10	06/08/05	06/26/05	KWG0509114	
Benz(a)anthracene	1700	D	84	24	10	06/08/05	06/26/05	KWG0509114	
Chrysene	2200	D	84	24	10	06/08/05	06/26/05	KWG0509114	
Bis(2-ethylhexyl) Phthalate	46	JD	1700	29	10	06/08/05	06/26/05	KWG0509114	
Di-n-octyl Phthalate	ND	U	84	20	10	06/08/05	06/26/05	KWG0509114	

Comments:

Printed: 07/06/2005 10:57:13

 $u:\Stealth\Crystal.rpt\Form\Im.rpt$

Merged

Form 1A - Organic 0 Λ 0

SuperSet Reference:

1 of 2 Page

RR49357

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005

Date Received: 06/03/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

C13-A

Lab Code:

K0500755-006

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzo(b)fluoranthene	1900 D	84	42	10	06/08/05	06/26/05	KWG0509114	
Benzo(k)fluoranthene	610 D	84	42	10	06/08/05	06/26/05	KWG0509114	
Benzo(a)pyrene	2200 D	84	27	10	06/08/05	06/26/05	KWG0509114	
Indeno(1,2,3-cd)pyrene	1400 D	84	32	10	06/08/05	06/26/05	KWG0509114	
Dibenz(a,h)anthracene	24 0 D	84	37	10	06/08/05	06/26/05	KWG0509114	
Benzo(g,h,i)perylene	1500 D	84	39	10	06/08/05	06/26/05	KWG0509114	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	56	11-87	06/26/05	Acceptable	
Phenol-d6	60	20-99	06/26/05	Acceptable	
Nitrobenzene-d5	50	10-99	06/26/05	Acceptable	
2-Fluorobiphenyl	54	10-104	06/26/05	Acceptable	
2,4,6-Tribromophenol	69	23-113	06/26/05	Acceptable	
Terphenyl-d14	83	39-124	06/26/05	Acceptable	

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 07/06/2005 10:57:13

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

809

SuperSet Reference:

RR49357

2 of 2 Page

Analytical Results

Client: Project: Parsons Brickerhoff Quade & Douglas, Inc

Sample Matrix:

80294/Ash Grove Cement DM Char.

Sediment

Service Request: K0500755 **Date Collected:** 06/02/2005 **Date Received:** 06/03/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

C123-Z

Lab Code:

Extraction Method: Analysis Method:

EPA 3541

K0500755-007

8270C

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	60	23	2.8	1	06/08/05	06/23/05	KWG0509114	
1,3-Dichlorobenzene	ND U	7.4	2.4	1	06/08/05	06/23/05	KWG0509114	
1,4-Dichlorobenzene	ND U	7.4	2.8	1	06/08/05	06/23/05	KWG0509114	
1,2-Dichlorobenzene	ND U	7.4	2.0	1	06/08/05	06/23/05	KWG0509114	the state of the s
Benzyl Alcohol	17	7.4	5.5	1	06/08/05	06/23/05	KWG0509114	
2-Methylphenol	ND U	7.4	5.0	1	06/08/05	06/23/05	KWG0509114	
Hexachloroethane	ND U	7.4	3.3	1	06/08/05	06/23/05	KWG0509114	
4-Methylphenol†	ND U	7.4	4.3	1	06/08/05	06/23/05	KWG0509114	
2,4-Dimethylphenol	ND U	37	8.1	1 .	06/08/05	06/23/05	KWG0509114	
Benzoic Acid	ND U	150	150	1	06/08/05	06/23/05	KWG0509114	
1,2,4-Trichlorobenzene	ND U	7.4	2.3	. 1	06/08/05	06/23/05	KWG0509114	
Naphthalene	9.6	7.4	2.0	1	06/08/05	06/23/05	KWG0509114	
Hexachlorobutadiene	ND U	7.4	2.1	1	06/08/05	06/23/05	KWG0509114	
2-Methylnaphthalene	6.1 J	7.4	1.8	1	06/08/05	06/23/05	KWG0509114	
Acenaphthylene	12	7.4	2.1	1	06/08/05	06/23/05	KWG0509114	
Dimethyl Phthalate	18	7.4	2.7	1	06/08/05	06/23/05	KWG0509114	
Acenaphthene	16	7.4	1.5	1	06/08/05	06/23/05	KWG0509114	
Dibenzofuran	4.0 J	7.4	2.0	. 1	06/08/05	06/23/05	KWG0509114	
Fluorene	11	7.4	2,5	1	06/08/05	06/23/05	KWG0509114	
Diethyl Phthalate	ND U	7.4	5.2	1	06/08/05	06/23/05	KWG0509114	
N-Nitrosodiphenylamine	ND U	7.4	3.3	1	06/08/05	06/23/05	KWG0509114	
Hexachlorobenzene	ND U	7.4	3.1	1	06/08/05	06/23/05	KWG0509114	
Pentachlorophenol	ND U	74	13	1	06/08/05	06/23/05	KWG0509114	
Phenanthrene	64	7.4	2.0	1	06/08/05	06/23/05	KWG0509114	
Anthracene	14	7.4	2.1	1	06/08/05	06/23/05	KWG0509114	
Di-n-butyl Phthalate	5.8 J	7.4	3.9	1	06/08/05	06/23/05	KWG0509114	
Fluoranthene	100	7.4	3.3	. 1	06/08/05	06/23/05	KWG0509114	
Pyrene	110	7.4	2.0	1	06/08/05	06/23/05	KWG0509114	
Butyl Benzyl Phthalate	ND U	7.4	2.3	1	06/08/05	06/23/05	KWG0509114	
Benz(a)anthracene	41	7.4	2.1	1	06/08/05	06/23/05	KWG0509114	
Chrysene	61	7.4	2.1	1	06/08/05	06/23/05	KWG0509114	
Bis(2-ethylhexyl) Phthalate	21 J	150	2.5	1	06/08/05	06/23/05	KWG0509114	
Di-n-octyl Phthalate	ND U	7.4	1.8	1	06/08/05	06/23/05	KWG0509114	

Comments:

Printed: 07/06/2005 10:57:14

 $u:\Stealth\Crystal.rpt\Form\1m.rpt$

Merged

Form 1A - Organic 210

SuperSet Reference:

Page

RR49357

1 of 2

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: 06/02/2005 **Date Received:** 06/03/2005

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

C123-Z

Lab Code:

K0500755-007

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Benzo(b)fluoranthene	65	7.4	3.7	1	06/08/05	06/23/05	KWG0509114	
Benzo(k)fluoranthene	18	7.4	3.7	1	06/08/05	06/23/05	KWG0509114	
Benzo(a)pyrene	50	7.4	2.4	1	06/08/05	06/23/05	KWG0509114	
Indeno(1,2,3-cd)pyrene	43	7.4	2.8	1	06/08/05	06/23/05	KWG0509114	
Dibenz(a,h)anthracene	8.2	7.4	3.3	1	06/08/05	06/23/05	KWG0509114	
Benzo(g,h,i)perylene	46	7.4	3.4	1	06/08/05	06/23/05	KWG0509114	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	58	11-87	06/23/05	Acceptable	
Phenol-d6	65	20-99	06/23/05	Acceptable	
Nitrobenzene-d5	61	10-99	06/23/05	Acceptable	
2-Fluorobiphenyl	44	10-104	06/23/05	Acceptable	
2,4,6-Tribromophenol	78	23-113	06/23/05	Acceptable	
Terphenyl-d14	69	39-124	06/23/05	Acceptable	

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 07/06/2005 10:57:14

u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

SuperSet Reference:

2 of 2

RR49357

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0509114-5

Extraction Method: Analysis Method:

EPA 3541

8270C

Units: ug/Kg Basis: Dry

Level: Low

•				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Phenol	3.1 J	15	1.9	1	06/08/05	06/23/05	KWG0509114	
1,3-Dichlorobenzene	ND U	5.0	1.6	1	06/08/05	06/23/05	KWG0509114	
1,4-Dichlorobenzene	ND U	5.0	1.9	1	06/08/05	06/23/05	KWG0509114	
1,2-Dichlorobenzene	ND U	5.0	1.3	1	06/08/05	06/23/05	KWG0509114	
Benzyl Alcohol	ND U	5.0	3.7	1	06/08/05	06/23/05	KWG0509114	
2-Methylphenol	ND U	5.0	3.4	1	06/08/05	06/23/05	KWG0509114	
Hexachloroethane	ND U	5.0	2.2	1	06/08/05	06/23/05	KWG0509114	
4-Methylphenol†	ND U	5.0	2.9	1	06/08/05	06/23/05	KWG0509114	
2,4-Dimethylphenol	ND U	25	5.5	1	06/08/05	06/23/05	KWG0509114	
Benzoic Acid	ND U	100	96	1	06/08/05	06/23/05	KWG0509114	
1,2,4-Trichlorobenzene	ND U	5.0	1.5	1	06/08/05	06/23/05	KWG0509114	
Naphthalene	ND U	5.0	1.3	· I	06/08/05	06/23/05	KWG0509114	
Hexachlorobutadiene	ND U	5.0	1.4	1	06/08/05	06/23/05	KWG0509114	
2-Methylnaphthalene	ND U	5.0	1.2	1	06/08/05	06/23/05	KWG0509114	
Acenaphthylene	ND U	5.0	1.4	1	06/08/05	06/23/05	KWG0509114	
Dimethyl Phthalate	ND U	5.0	1.8	1	06/08/05	06/23/05	KWG0509114	
Acenaphthene	ND U	5.0	1.0	1	06/08/05	06/23/05	KWG0509114	
Dibenzofuran	ND U	5.0	1.3	1	06/08/05	06/23/05	KWG0509114	
Fluorene	ND U	5.0	1.7	1	06/08/05	06/23/05	KWG0509114	
Diethyl Phthalate	ND U	5.0	3.5	1	06/08/05	06/23/05	KWG0509114	
N-Nitrosodiphenylamine	ND U	5.0	2.2	1	06/08/05	06/23/05	KWG0509114	
Hexachlorobenzene	ND U	5.0	2.1	1	06/08/05	06/23/05	KWG0509114	
Pentachlorophenol	ND U	50	8.5	1	06/08/05	06/23/05	KWG0509114	
Phenanthrene	ND U	5.0	1.3	1	06/08/05	06/23/05	KWG0509114	
Anthracene	ND U	5.0	1.4	1	06/08/05	06/23/05	KWG0509114	
Di-n-butyl Phthalate	ND U	5.0	2.6	1	06/08/05	06/23/05	KWG0509114	
Fluoranthene	ND U	5.0	2.2	1	06/08/05	06/23/05	KWG0509114	
Pyrene	ND U	5.0	1.3	1	06/08/05	06/23/05	KWG0509114	
Butyl Benzyl Phthalate	ND U	5.0	1.5	1	06/08/05	06/23/05	KWG0509114	
Benz(a)anthracene	ND U	5.0	1.4	1	06/08/05	06/23/05	KWG0509114	
Chrysene	ND U	5.0	1.4	1	06/08/05	06/23/05	KWG0509114	
Bis(2-ethylhexyl) Phthalate	ND U	100	1.7	1	06/08/05	06/23/05	KWG0509114	
Di-n-octyl Phthalate	ND U	5.0	1.2	1	06/08/05	06/23/05	KWG0509114	

Printed: 07/06/2005 10:57:16 u:\Stealth\Crystal.rpt\Form1m.rpt

Comments:

Merged

Form 1A - Organic

010

Page 1 of 2

SuperSet Reference: RR49357

Analytical Results

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0509114-5

Extraction Method: Analysis Method:

EPA 3541

8270C

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Benzo(b)fluoranthene	ND U	5.0	2.5	1	06/08/05	06/23/05	KWG0509114	
Benzo(k)fluoranthene	ND U	5.0	2.5	1	06/08/05	06/23/05	KWG0509114	
Benzo(a)pyrene	ND U	5.0	1.6	1	06/08/05	06/23/05	KWG0509114	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1.9	1	06/08/05	06/23/05	KWG0509114	
Dibenz(a,h)anthracene	ND U	5.0	2.2	1	06/08/05	06/23/05	KWG0509114	
Benzo(g,h,i)perylene	ND U	5.0	2.3	1	06/08/05	06/23/05	KWG0509114	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	54	11-87	06/23/05	Acceptable	-
Phenol-d6	60	20-99	06/23/05	Acceptable	
Nitrobenzene-d5	57	10-99	06/23/05	Acceptable	
2-Fluorobiphenyl	64	10-104	06/23/05	Acceptable	
2,4,6-Tribromophenol	53	23-113	06/23/05	Acceptable	
Terphenyl-d14	91	39-124	06/23/05	Acceptable	

Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 07/06/2005 10:57:16

 $u:\Stealth\Crystal.rpt\Form\Im.rpt$

Merged

Form 1A - Organic

813

Page 2 of 2

RR49357 SuperSet Reference:

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4	Sur5	Sur6
C13-A	K0500755-006	56 D	60 D	50 D	54 D	69 D	83 D
C123-Z	K0500755-007	58	65	61	44	78	69
Method Blank	KWG0509114-5	54	60	57	64	53	91
C123-ZMS	KWG0509114-1	59	67	66	59	82	74
C123-ZDMS	KWG0509114-2	58	65	62	62	86	78
Lab Control Sample	KWG0509114-3	60	66	71	73	88	90
Duplicate Lab Control Sample	KWG0509114-4	67	73	81	81	96	95

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	11-87	Sur5 = 2,4,6-Tribromophenol	23-113
Sur2 = Phenol-d6	20-99	Sur6 = Terphenyl-d14	39-124
Sur3 = Nitrobenzene-d5	10-99		
Sur4 = 2-Fluorobiphenyl	10-104		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/06/2005 10:57:21

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference:

Page 1 of 1

211

RR49357

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

80294/Ash Grove Cement DM Char.

Project: Sample Matrix:

Sediment

Service Request: K0500755

Date Extracted: 06/08/2005 **Date Analyzed:** 06/23/2005

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

C123-Z

Lab Code:

K0500755-007

Basis: Dry

Units: ug/Kg

Extraction Method:

EPA 3541

Level: Low

Analysis Method:

8270C

Extraction Lot: KWG0509114

C123-ZMS

C123-ZDMS

KW/G0500114..1

WWG0500114..2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Phenol	60	162	184	55	156	184	52	21-106	4	40
1,4-Dichlorobenzene	ND	85.8	184	47	83.8	184	46	10-77	2	40
1,2,4-Trichlorobenzene	ND	95.4	184	52	103	184	56	10-89	8	40
Acenaphthene	16	171	184	84	143	184	69	10-140	18	40
Pentachlorophenol	ND	189	184	103	137	184	75	10-132	32	40
Pyrene	110	362	184	137	243	184	73	10-173	39	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/06/2005 10:57:42

u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

819

Page

SuperSet Reference: RR49357 1 of 1

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project: Sample Matrix: 80294/Ash Grove Cement DM Char.

Sediment

Service Request: K0500755

Date Extracted: 06/08/2005 **Date Analyzed:** 06/23/2005

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0509114

Lab Control Sample KWG0509114-3

Duplicate Lab Control Sample KWG0509114-4

		Lab Control Spike			Duplicate Lab Control Spike			Duplicate Lab Control Spike		%Rec	RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit		
Phenol	209	250	83	229	250	91	30-107	9	40		
1,3-Dichlorobenzene	156	250	62	175	250	70	38-94	11	40		
1,4-Dichlorobenzene	152	250	61	168	250	67	38-92	10	40		
1,2-Dichlorobenzene	168	250	67	182	250	73	39-96	8	40		
Benzyl Alcohol	152	250	61	175	250	70	32-102	14	40		
2-Methylphenol	166	250	66	203	250	81	17-97	20	40		
Hexachloroethane	158	250	63	173	250	69	38-98	9	40		
4-Methylphenol	174	250	70	209	250	83	14-99	18	40		
2,4-Dimethylphenol	105	250	42	147	250	59	10-72	33	40		
Benzoic Acid	366	750	49	308	750	41	10-83	17	40		
1,2,4-Trichlorobenzene	159	250	64	177	250	71	37-98	11	40		
Naphthalene	162	250	65	182	250	73	39-97	12	40		
Hexachlorobutadiene	162	250	65	173	250	69	38-96	7	40		
2-Methylnaphthalene	156	250	62	176	250	70	38-95	12	40		
Acenaphthylene	187	250	75	214	250	8 6	46-106	14	40		
Dimethyl Phthalate	185	250	74	219	250	88	44-107	17	40		
Acenaphthene	. 177	250	71	206	250	82	42-98	15	40		
Dibenzofuran	173	250	69	194	250	78	41-99	12	40		
Fluorene	185	250	74	213	250	85	43-104	14	40		
Diethyl Phthalate	196	250	79	224	250	90	45-114	13	40		
N-Nitrosodiphenylamine	203	250	81	228	250	91	27-123	11	40		
Hexachlorobenzene	199	250	80	221	250	88	49-107	10	40		
Pentachlorophenol	206	250	82	216	250	87	25-114	5	40		
Phenanthrene	191	250	76	215	250	8 6	48-101	12	40		
Anthracene	197	250	79	220	250	88	50-106	11	40		
Di-n-butyl Phthalate	205	250	82	226	250	90	49-126	10	40		
Fluoranthene	209	250	83	225	250	90	51-119	8	40		
Pyrene	197	250	79	214	25 0	85	51-109	8	40		
Butyl Benzyl Phthalate	202	250	81	209	250	83	54-123	3	40		
Benz(a)anthracene	216	250	86	229	250	92	57-115	6	40		
Chrysene	218	250	87	230	250	92	59-120	5	40		
Bis(2-ethylhexyl) Phthalate	208	250	83	223	250	89	52-136	7	40		
Di-n-octyl Phthalate	205	250	82	222	250	89	54-127	8	40		
Benzo(b)fluoranthene	211	250	84	231	250	92	54-116	9	40		
Benzo(k)fluoranthene	212	250	85	230	250	92	56-115	8	40		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/06/2005 10:57:45

Form 3C - Organic

000

SuperSet Reference:

Page 1 of 2 RR49357

QA/QC Report

Client:

Sample Matrix:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char. Sediment

Service Request: K0500755

Date Extracted: 06/08/2005

Date Analyzed: 06/23/2005

Lab Control Spike/Duplicate Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: ug/Kg

Basis: Dry

Level: Low Extraction Lot: KWG0509114

Lab Control Sample

Duplicate Lab Control Sample

		/G0509114-3 Control Spike			/G0509114-4 Lab Control		%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Benzo(a)pyrene	214	250	86	237	250	95	53-120	10	40	
Indeno(1,2,3-cd)pyrene	225	250	90	249	250	100	52-125	10	40	
Dibenz(a,h)anthracene	235	250	94	259	250	104	53-122	10	40	
Benzo(g,h,i)perylene	216	250	87	237	250	95	45-124	9	40	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/06/2005 10:57:45 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

221

SuperSet Reference:

2 of 2

RR49357

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755 Date Extracted: 06/08/2005

Date Analyzed: 06/23/2005 Time Analyzed: 15:32

Method Blank Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG0509114-5

Instrument ID: MS10

File ID: J:\MS10\DATA\062305\0623F015.D

Extraction Method: Analysis Method:

EPA 3541

8270C

Level: Low

Extraction Lot: KWG0509114

This Method Blank applies to the following analyses:

			Date	Time
Sample Name	Lab Code	File ID	Analyzed	Analyzed
Lab Control Sample	KWG0509114-3	J:\MS10\DATA\062305\0623F016.D	06/23/05	16:10
Duplicate Lab Control Sample	KWG0509114-4	J:\MS10\DATA\062305\0623F017.D	06/23/05	16:48
C123-ZMS	KWG0509114-1	J:\MS10\DATA\062305\0623F018.D	06/23/05	17:25
C123-ZDMS	KWG0509114-2	J:\MS10\DATA\062305\0623F019.D	06/23/05	18:03
C123-Z	K0500755-007	J:\MS10\DATA\062305\0623F020.D	06/23/05	18:41
C13-A	K0500755-006	J:\MS06\DATA\062605\0626F015.D	06/26/05	17:56

Printed: 07/06/2005 10:57:50

 $u:\Stealth\Crystal.rpt\Form4mb.rpt$

Form 4A - Organic

 α

SuperSet Reference:

Page 1 of 1 RR49357

QA/QC Report

Client:

Parsons Brickerhoff Quade & Douglas, Inc

Project:

80294/Ash Grove Cement DM Char.

Sample Matrix:

Sediment

Service Request: K0500755

Lab Control Sample/Duplicate Lab Control Sample Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Lab Control Sample

File ID:

KWG0509114-3

Instrument ID:

J:\MS10\DATA\062305\0623F016.D

Date Extracted: Date Analyzed:

06/08/2005 06/23/2005

Time Analyzed:

Analysis Method:

16:10

MS10

Extraction Method: EPA 3541

8270C

Sample Name: Duplicate Lab Control Sample

Lab Code: KWG0509114-4

File ID: J:\MS10\DATA\062305\O623F017.D Instrument ID: MS10

Date Extracted: 06/08/2005

Date Analyzed: 06/23/2005

Time Analyzed: 16:48

Level: Low

Extraction Lot: KWG0509114

These Lab Control Samples apply to the following analyses:

			Date	Time
Sample Name	Lab Code	File ID	Analyzed	Analyzed
Method Blank	KWG0509114-5	J:\MS10\DATA\062305\0623F015.D	06/23/05	15:32
C123-ZMS	KWG0509114-1	J:\MS10\DATA\062305\0623F018.D	06/23/05	17:25
C123-ZDMS	KWG0509114-2	J:\MS10\DATA\062305\0623F019.D	06/23/05	18:03
C123-Z	K0500755-007	J:\MS10\DATA\062305\0623F020.D	06/23/05	18:41
C13-A	K0500755-006	J:\MS06\DATA\062605\0626F015.D	06/26/05	17:56

Printed: 07/06/2005 10:57:54 u:\Stealth\Crystal.rpt\Form4DLC.rpt

Form 4B - Organic

SuperSet Reference:

1 of Page

RR49357

823

APPENDIX C

QA1 CHECKLISTS

CHECKLIST FOR CONVENTIONAL VARIABLES

roject Name		ve Cement DI		Report		K0500755	
ab	CAS	Lab			# Field S		2
Reviewed by	SB/Inte	egral Consulti	ng	Date		7/21/2005	
ates:				-			
Sampling	-	6/2/2005		_ Elapsed Time	e (Days):		
Shipping		6/3/2005					
Receiving		6/3/2005		1			
roblems noted (e.g., deviatio	n from presc	ribed metho	ds, analytical p	roblems):		
o problems were	noted.						
OMBLETENEO	0.440.00.0		T10110				
OMPLETENES	S AND HOLI	DING COND	HONS	Total	; ;	:	Grain Size
		TOC	TVS	Sulfides	Ammonia	Total Solids	
Mothad (id-		*********************	· · · · · · · · · · · · · · · · · · ·		************************		
Method (ider # Analyzed	шу)	PSEP	160.4M		not analyzed	160.3M	PSEP
# Analyzed # Submitted		2 2	2 2			2 2	2 2
# Submitted			<u>Z</u>			۷	
olding condition	s accentable	? (Y/N)		Yes			
no, identify sam	,	. (1/14)		105			
io, lacitily sail	ipics.						
DRMAT							
oncentrations in	nroner unite	and significs	ant figures?	(∨/NI)		Yes	
ample detection						Yes	
ualifiers defined		a, when app	ilicable: (171	4)		108	
				i i			
		,		 			
						### \$100 m	
				 			,
A/QC SAMPLE	S			<u> </u>			
ethod Blank							
Total #			1 (TOC)	1			
Frequency (r	minimum 1/h:	atch) ^b		1/batch			
Amount dete				not detected			
(no PSEP co		· ·		nor actected			
andard Refere	,	1					
Total #	moe materia		ory Control S	ample (TOC)			
Frequency (minimum 1/a		ory Control 5	1/batch			
SRM used	minimum 1/80	ui vey <i>)</i>		1/Datch			
Within 95%	confidence in	tervel2 /V/NI) 010/	ecovery (85-115	necentable	(A)	
	control limit)	•	J 91% T	ecovery (83-113	acceptable ran	gc)	
nalytical Repli		1					
iary trout itopin		1		Total	1	1	Grain Size
		тос	TVS	Sulfides	Ammonia	Total Solids	Distribution
Total #	****		• • • • • • • • • • • • • • • • • • • •	Juniues	CHHOHIA		?
Frequency		1 trip	1 dup			1 dup 1/batch	1 trip 1/batch
	triplicate per	1/batch	1/batch			1/Datch	; 1/Daten
	triplicate per			(/ \			
Analytes Wit	h RPD >20%	•	- control limi	it):			
	none						
				4			

PROJECT NUMBER	C178-0201
1 TOOLO : HOMBEIT	0170 0201

CHECKLIST FOR CONVENTIONAL VARIABLES (continued)

atrix Spikes		
Total #	1 (TOC)	
Frequency	1/batch	
Chemicals with recovery	outside 75-125%:	
none	<u>a</u>	

^aAll samples collected in field (laboratory QA samples excluded). ^bRecommended by PSEP.

PROJECT NUMBE	ER CI	178-0201

CHECKLIST FOR METALS

Project Name	Ash Grove Ceme	ent DM Charac.	_ Report	K0500755	
_ab	CAS	Lab #		# Field Samples ^a	2
Reviewed by	SB/Integral Co	onsulting	Date	7/21/2005	
Dates:					
Sampling	6/2/2	.005	_ Elapsed Time	e (Days):	
Shipping	6/3/2		1		
Receiving	6/3/2		1		
	.g., deviation from			•	
				s lower recovery limit. Sedi	
	•			on method. Other QA/QC s	
calibration standards	, etc.) indicated that	the analysis itself v	vas in control and	the lab felt no qualification	was necessar
COMPLETENCES	AND HOLDING C	ONDITIONS			
COMPLETENESS	AND HOLDING C	CNDITIONS			
	Metals except	Manager			
Mathad (identify)	mercury	Mercury			
Method (identify)	6020	7471A	_		
# Analyzed # Submitted	2 2	2			
		2			
-	acceptable? (Y/N)		Yes		
	for metals except i	mercury; 28 days	trozen for merc	eury)	
If no, identify samp	iles;				
FORMAT					
	proper units and sig	gnificant figures?	(Y/N)	Yes	
Qualifiers defined:					
B Estimated va	lue <mrl and="">MD</mrl>	L			
U Not detected	at or above MRL/MI	DL			
N Matrix Spike	sample recovery not	within limits			
Sample detection I	imits provided for e	each analyte? (Y/	N)	Yes	
	s exceed screening			No	
lf yes, identify sam	ples with detection	limits exceeding	screening level	s:	
Antimony		Arsenic		Cadmium	
Copper		Lead		Mercury	
Nickel		Silver		Zinc	
QA/QC SAMPLES)				
Preparation Blan	ĸ				
Total #		1			
Frequency		1/ba	tch		
•	or 1/batch, whiche			and the state of t	
	served above dete			b	
			or more blanks	3 ,	
	, cadmium, silver (B	quannea)			
antimony.	B0-1				
	ice Material	4 7 1 0	1.6		
Standard Referer	ioo matoriai		ol Sample		
Standard Referer Total #		1 Lab Contr			
Standard Referer Total # Frequency ^c		1/ba	tch.		
Standard Referer Total # Frequency ^c	or 1/batch, whiche	1/ba	tch.		
Standard Referer Total # Frequency ^c	or 1/batch, which	1/ba	tch.		
Standard Referer Total # Frequency ^c (minimum 5% SRM used	or 1/batch, whiche	1/ba Ever is more frequ RA Lot #246	tch uent) ^b	ified values, use matrix sp	pike results):

PROJECT NUMBER	C178-0201

CHECKLIST FOR METALS (continued)

Analytical Replicates		
Total #	1	
Frequency ^c	1/batch	•
(minimum 5% or 1/batc	h, whichever is more frequent) ^b	
Chemicals with >20% r	elative percent difference or coefficient of variation: b	
Mercury (26%) - The la	b's control limit is 30%	
RPD and so was not	t flagged by the lab.	
Matrix Spikes		
Total #	1 .	_
Frequency ^c	1/batch	_
(minimum 5% or 1/batc	h, whichever is more frequent) ^b	
Chemicals with recover	ry outside 75-125%: ^b	
Antimon	ny (25%)	

^aAll samples collected in field (laboratory QA samples excluded).

^bRecommended by PSEP.

[°]For batches of five samples or less, the minimum QA checks should be a blank and the analysis of an SRM (and matrix spikes for any analysis not certified in the SRM). In general, the priority of QA checks for batches of <= 5 samples should be as follows: SRM > analytical replicates > matrix spikes.

PROJECT NUMBER	C178-0201

CHECKLIST FOR	SEMIVOL	ATILE ORGANIC	CHEMICALS
		ATILL DIVOANIO	UILINIUALU

Project Name	Ash Grove Cen	nent DM Charac.	Rep	port	K0500755	
Lab	CAS	Lab #	,	# F	ield Samples ^a	2
Reviewed by	SB/Integral C		Da		7/21/2005	
Dates:		5113				
Sampling	6/2/	2005	Elar	sed Time (Days)	•	
Shipping		2005		1		
Receiving		2005	•	1		
		prescribed method	s ar	alytical problems	.	
					vere flagged by the la	h as such ("i"
					DE and 4,4'-DDT was	
		-		,	peak anomalies were	
					natrix interferences.	
		as taken by the lab (1 CDs. Due to
COMPLETENESS	S AND HOLDING	CONDITIONS	omm.	ided at end of sheet)	
	, and nothing t					
	A/B/N	Pesticides/PCB				
Method (identify)	8270C	8081A				
# Analyzed	2	2				
# Submitted	2.	2				
	acceptable? (Y/N			V		
				Yes		
		onths for frozen tiss	sue)			
If no, identify sam	pies:					
	•					
Extraction times a	, , ,			Yes		
If no, identify sam	ples:					
FORMAT						
		ignificant figures? (Y/N)		Yes	
Qualifiers defined:						
	tlue <mrl and="">MI</mrl>	DL	D	Reported result i	s from a dilution	
	Criteria exceeded					
	at or above the MR		<u> </u>			
	elevated due to inter					
Sample detection	limits provided for	each analyte? (Y/N	I)		Yes	
Did detection limit	s exceed screenin	g levels? (Y/N)			Yes	
If yes, identify san	nples with detectio	n limits exceeding s	scree	ning levels:		
		enol, benzoic acid, n-			exachlorobezene	
	,,,,	,		ouipiioii) iuiiiiii, iii		
QA/QC SAMPLES	e					
Method Blank	3					
Total #		1				
Frequency		1/bate	h			
	e per extraction ba					
		g for phthalates and	2.5	ug for others (low	rer levels may be ap	opropriate for
pesticides an	d PCBs):					
SVC	Cs - Phenol @ 3.1J	μg/kg		Pest/PCBs	- not detected	
	All others not detecte					

PROJECT NUMBER	C178-0201

CHECKLIST FOR SEMIVOLATILE ORGANIC CHEMICALS (continued)

Standard Refere	nce Material							
Total #	1 Lab Control Sample							
Frequency	1/batch							
(<=50 sample	es - one per batch; >50 samples - one per 50 samples analyzed) ^b							
SRM used								
Chemicals or	utside 95% confidence interval (for certified values): ^b							
none	e outside acceptable limits							
Analytical Replic	atos							
•	1 MS/MSD & 1 Lab Control Sample/Dup Lab Control Sample (SVOCs)							
Frequency	1/batch							
(<=20 sample	es - one per batch; >20 sampless - one triplicate and additional duplicate for minimum of 5%							
total replication								
Chemicals w	ith >100% relative percent difference or coefficient of variation: ^b							
	none							
Matrix Spikes								
Total #	1 MS/MSD							
Frequency								
(<=20 sample	es - one per batch; >20 samples - 5% of total samples) ^b							
Chemicals w	ith <50% recovery. ^b							
1,4-dichlor	obenzene (MS-47%, MSD-46%)							

Problems noted (e.g., deviation from prescribed methods, analytical problems) CONTINUED: to select the analytical peaks based on the best resolution. The lab acknowledged that the potential exists for a high bias in this case because more than one Aroclor can contribute to common peaks or peaks can not be resolved. SVOCs: MRLs for C13-A are elevated due to the need for dilution. Also, the primary evaluation criterion for benzoic acid, 2,3-dinitrophenol, and pentachlorophenol was exceeded during initial calibration. In accordance with the Method, the lab used an alternative method for evaluating performance (RSD of all analytes). This alternative method met criteria. No other problems were noted.

^aAll samples collected in field (laboratory QA samples excluded).

^bRecommended by PSEP.

^cRecommended by PSEP. A matrix spike duplicate can serve as an analytical replicate.

APPENDIX D

SUMMARY OF SEDIMENT PHYSICAL AND CHEMICAL RESULTS

Sediment chemistry results compared with DMMP criteria.

Shaded concentrations exceed corresponding DMMP values. Criteria updated June 2005.

	DMMP			DMMU		
	Screening Level	Screening Level Bioaccumulation Maximum Level				
	(SL)	Trigger (BT)	(ML)	C13-A	C123-Z	
Phthalates						
Dimethyl phthalate	71		1,400	30 U	18	
Diethyl phthalate	200		1,200	59 U	5.2 U	
Di-n-butyl phthalate	1,400		5,100	44 U	5.8 J	
Butylbenzyl phthalate	63		970	25 U	2.3 U	
Bis(2-Ethylhexyl) phthalate	1,300		8,300	46 JD	21 J	
Di-n-octyl phthalate	6,200	AL 10-12	6,200	20 U	1.8 U	
Phenols			·			
Phenol	420		1,200	32 U	60	
2-Methylphenol	63		77	57 U	5.0 U	
4-Methylphenol	670		3,600	49 U	4.3 U	
2,4-Dimethylphenol	29		210	92 U	8.1 U	
Pentachlorophenol	400	504	690	150 U	13 U	
Miscellaneous Extractables						
Benzyl Alcohol	57		870	62 U	17	
Benzoic Acid	650		760		150 U	
Dibenzofuran	540		1,700	22 U	4.0 J	
Hexachlorobutadiene	29		270	24 U	2.1 U	
N-Nitrosodiphenylamine	28		130	37 U	3.3 U	
Hexachloroethane	1,400		14,000	37 U	3.3 U	
Pesticides and PCBs						
4,4'-DDE				5.4 P	2.9	
4,4'-DDD				3.7	1.6	
4,4'-DDT		~~~		2.5 P	1.2	
Total DDT	6.9	50	69	11.6	5.7	
Aldrin	10			0.16 U	0.16 Ui	
Chlordane	10	37		1.0 Ui	0.55 J	
Dieldrin	10			1.0 Ui	1.0 Ui	
Heptachlor	10			0.29 U	1.0 Ui	
Lindane	10			0.37 U	0.33 U	
Aroclor 1016				2.2 U	2.0 U	
Aroclor 1242				2.2 U	2.0 U	
Aroclor 1248				100	13	
Aroclor 1254				72	24	
Aroclor 1260				52	17	
Aroclor 1221		***		2.2 U	2.0 U	
Aroclor 1232				2.2 U	2.0 U	
Total PCBs	130	38 mg/kg TOC	3,100	224	54	

Notes:

Exceeds DMMP SL value

Exceeds DMMP ML value

D - Reported value is from a dilution.

J - Result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

P - The GC or HPLC confirmation criteria was exceeded.

U - Chemical was undetected at the reported concentration.

i - The MRL/MDL has been elevated due to chromatographic interference.

APPENDIX D Sediment chemistry results compared with DMMP criteria.

Shaded concentrations exceed corresponding DMMP values. Criteria updated June 2005.

		exceed corresponding DMMP values. Criteria upo			J	
	Screening Level	Screening Level Bioaccumulation Maximum Level				
	(SL)	Trigger (BT)	(ML)	C13-A	C123-Z	
Conventionals						
Total Organic Carbon (%)				1.45	1.26	
Total Volatile Solids (%)				5.06	3.76	
Total Solids				60.1	68.0	
Gravel (%)				0.35	0.97	
Sand (%)				40.61	63,3	
Clay (%)				11.0	7.69	
Silt (%)				49.7	28.8	
Fines (%)]	60.7	36.5	
Metals (mg/kg, dry weight)						
Antimony	150	***	200	0.13	0.18	
Arsenic	57	507.1	700	3.97	4.81	
Cadmium	5.1	11.3	14	0.552	0.382	
Copper	390	1,027	1,300	30.3	19.8	
Lead	450	975	1,200	29.5	14	
Mercury	0.41	1.5	2.3	0.116	0.064	
Nickel	140	370	370	21.9	19.2	
Silver	6.1	6.1	8.4	0.162	0.088	
Zinc	410	2,783	3,800	120	68.3	
Organics (µg/kg, dry weight)						
LPAHs	5,200		29,000	1,117	133	
Naphthalene	2,100	M 20 %	2,400	150 D	9.6	
Acenaphthylene	560		1,300	160 D	12	
Acenaphthene	500		2,000	49 JD	16	
Fluorene	540		3,600	57 JD	11	
Phenanthrene	1,500		21,000	500 D	64	
Anthracene	960		13,000	150 D	14	
2-Methylnaphthalene	670		1,900	51 JD	6.1 J	
HPAHs	12,000	***	69,000	17,350	542	
Fluoranthene	1,700	4,600	30,000	2,500 D	100	
Pyrene	2,600	11,980	16,000	3,100 D	110	
Benzo(a)anthracene	1,300		5,100	1,700 D	41	
Chrysene	1,400		21,000	2,200 D	61	
Benzo(b)fluoranthene				1,900 D	65	
Benzo(k)fluoranthene				.610 D	18	
Benzofluoranthenes	3,200		9,900	2,510	83	
Benzo(a)pyrene	1,600	+	3,600	2,200 D	50	
Indeno(1,2,3-cd)pyrene	600		4,400	1,400 D	43	
Dibenz(a,h)anthracene	230	***	1,900	240 D	8.2	
Benzo(g,h,i)perylene	670		3,200	1,500 D	46	
Chlorinated Hydrocarbons			, <u> </u>	×-		
1,4-Dichlorobenzene	110		120	32 U	2.8 U	
1,2-Dichlorobenzene	35		110	22 U	2.0 U	
1,2,4-Trichlorobenzene	31	No religio	64	25 U	2.3 U	
Hexachlorobenzene	22	168	230	35 U	3.1 U	
1,3-Dichlorobenzene	170		230	27 U	2.4 U	

SPECIAL WASTE PERMIT APPLICATION

Disposai Site: CKC_	· · · · · · · · · · · · · · · · · · ·	riniey Buttes		wasco <u>A</u>	
Generator name and addr	ess: <u>Ash Grov</u>	re Cement Company 13939	N Rivergat	e Blvd Portland, OR 97	<u>203</u>
Billing name & address	Same as above.	_Waste description: Willar	nette River	Dredge Spoils	,
Quantity: <u>Approximatel</u> Other:	y 2000 Cubic Yaı	rds > Frequency of disposa	: X One-t	ime	
Process generating waste	: Off-loading s	pillage and from an overtim	e buildup o	f sediment.	
Waste address (include co	ounty & zip code):	13939 N Rivergate Blvd P	ortland, OF	R 97203 River Mile 2.9	Multnomah
Contact: Glenn F. Dollar		Phone: <u>503</u> /2	86/1677/ex	rt 423 Fax: 503 /28	9/2272
		Phone: 360 /6			
	PHYSICAL (CHARACTERISTICS AN	D DOCU	MENTATION	
Physical state:	⊠ Solid	☐ Semi-solid	□ Dust	y 🗖 Sludge	□ Color:
Analytical results:	H (PCS) □ Vo * BTEX	olatiles		P-Metals Other:	
Sample source:	☐ Pile	☐ In-ground ☐ Pit	bottom	🗵 Other:	
Additional information:	☐ MSDS	☑ Process knowledge		Other:	
	NO	ON-HAZARDOUS DETE	RMINATI	ON	
Under 40 CFR Part 261	is this a Listed or	Characteristic waste?	☐ Yes	⊠ No	
		ncial hazardous waste?			
Is waste covered or restri Basis for non-hazardous		ling by any permit?	☐ Yes	⊠ No	
	WASTE	CERTIFICATIO	N STA	TEMENT	
classified, packaged, laber U.S. EPA, the State of radioactive materials. I c	eled, and prepare Oregon, or the ertify that all san f there is a change	ained herein is true and co d as indicated. I certify this state or province of origi apples used for this analysis e in the composition of, or a Authornal	waste is not	ot hazardous or dangere this waste does not contaitive of the materials	ous as defined by the ontain any regulated described herein. I

REPRESENTATIVE SAMPLE CERTIFICATION

INSTRUCTIONS: This form must be completed in order to determine the acceptability of the waste described in the Special Waste Permit Application for disposal at a municipal solid waste landfill. Analytical data for certain wastes is required for an adequate assessment of waste composition and regulatory status. This form is used to certify that the analytical data presented was derived from testing a representative sample, which reflects the physical characteristics and chemical components in the same proportion as the total waste stream. A representative sample may be obtained using methods specified in federal (40 CFR Part 261, Appendix I) or state regulations.

SECTION A:	DESCRIBE SAMPLING POINT OR LOCATION								
	☐ Pile	☐ In-ground	☐ Pit bottom	☐ Drum	Other: <u>Within Dredge Prism</u>				
SECTION B:	SAMPI	LING METHOD							
	0				naterial described in the attached special sthods specified in 40 CFR Part 261.				
	₩.		representative sample ication by an equivale		naterial described in the attached special				
SECTION C:	REPRE	SENTATIVE DA	TA CERTIFICATIO	ON					
	Generat	ors' name:	Ash Grove Cement	Company	THE REAL PROPERTY OF THE PERTY				
	Waste ty	уре:	Dredge Spoils						
	Date sar	mple collected:	June 2005		Wilde Co.				
	Sampler	rs' name:	Jerry Ramsden		·				
	Sampler	s' employer:	Parsons Brinkerhoff	•					
SECTION D:	REPRE	SENTATIVE SA	MPLE CERTIFICA	TION					
	I hereby certify that the analytical data presented was derived from testing a representative sample taken in accordance with one of the methods listed in Section A of this form.								
	G/E Name	onn F. C	Oollar Authorized representative's signature						
	E 4 Title	'S Manac	gen		124/06				

SPECIAL WASTE INSTRUCTIONS

- The generator must determine if the waste is hazardous or dangerous before completing a permit application.
- The special waste permit application must be in the name of the generator of the waste and signed by an authorized representative who is responsible for the accuracy of all information submitted.
- Recertification is required for on-going special waste streams prior to the expiration date.
- A copy of the approved special waste permit must be shown to the gatehouse attendant upon delivery at the facility.

DISPOSAL SIT	re:	CRC		FINLEY E	BUTTES		WASCO_	<u>X</u>	
			- To be c	ompleted by di	sposal compar	ny -			
Generator:									
Customer:									
Waste:									
Instructions:									
Date:									
Permit No:									
Expiration date:									
Previous No:	-								
Landfill report:	Yes /]	No							
Environmental a	pproval:								

Glenn Dollar

From: Reece Vernon [ReeceV@WasteConnections.com]

Sent: Tuesday, October 31, 2006 11:22 AM

To: glenn.dollar@ashgrove.com

Subject: Pre-Approval for Special Waste disposal

Glenn,

This email is in response to your October 26, 2006 request for approval to dispose of dredge spoils from Ash Grove Cement, at the Wasco County Landfill.

The dredged material has been described as limestone rock from off-loading spillage and river sediment built up over time. Based on the analytical data and Special Waste Permit Application you provided, Waste Connections gives preliminary approval for disposal of this material as special waste at Wasco County Landfill.

The project is scheduled to begin in July 2007 and is expected to be completed by October 2007. Waste Connections will issue a special waste disposal permit prior to the start of the project. A copy of the permit must accompany each load of waste material transported to Wasco County Landfill.

Please call me with any questions regarding the issuance of the special waste permit. Thank you.

Reece Vernon Waste Connections, Inc. P.O. Box 61726 Vancouver, Washington 98666

phone 360.695.4858 x317 fax 360.695.5091

Invoice:

2440

(360) 695-4553

Sold

to

Ash Grove Cement Company 13939 N Rivergate Blvd Portland, OR 97203 Ship to

> 2420 Rivergate Maint. Dredging 13939 N Rivergate Portland, OR 97203

Charges for material dredged from your Rivergate faicility and disposed and disposed at the Wasco County Landfill in the Dalles, OR

	•		Unit	Extended
<u>ltem</u>	Quantity	<u>Description</u>	<u>Price</u>	<u>Price</u>
MOB/DEMOB	1	Lumps Sum billing for		
		Mobilization/Demobilization	30425.00	30,425.00
CURTAIN	1	Lumps Sum Billing for Installation, furnish, and		
		remove Turbidity Curtain	25000.00	25,000.00
WATER QUALITY	1	Water Quality Monitoring	4197.50	4,197.50
DISPOSAL	1	Disposal of excess water	4703.50	4,703.50
DREDGE/DISPOSE	2465.41	Dredge and Disposal of material	69.00	170,113.29
CREDIT	1	Credit for drying agent	-792.49	-792.49

Ash Grove-Rivergate Original Invoice Received

AUG 1 5 2007

CO#_____ Due Date_____ Approved By_____

8/16 - Venda set-up

Subtotal

233,646.80

Please Remit payments to: PO Box 291 Vancouverr, WA 98666

Total

\$233,646.80

6801 NW Old Lower River Road

	couver, WA 98660 5-4553 (503) 284-1140	MITIWITHIFISIS
Job Name Ash Con	nuc	Date 7/12/07
Job No	Weather	
Equipment: 🗆 Sea Hawk	Sea Vulture OSea Lion C	□Viking □966 Loader #Chetco
□ Barge 174	□Barge 34 □BK5 □Nova	□Barge 47 □ Barge Harvey A

CRANEWORK & DREDGING	□Barge 174 □Barge 34 □BK5 □Nova □Barge 47 □Barge Harvey A
	□Manlift □ Other
Equipment Safety Checks Performed?((Yes) No
Personal Protective Equipment Safety (
	THAT UP - WEID Plate in END of Cheter-load
	- rout Deck lines
1430-MKE UP TO 6	
1490 - Denit RocAsha	rour
530 -ON SAT- HECKY	Buck To fait for cheton - crew kying Boom of Beck Side Beell'S
1635 - chetro en ria	- 47 cese 20' Bean in Beck side beell's
650 - Depart Parkas	en Husky
730- secure	<u> </u>
	Den 10
	Doct 10
	70m 10
	(海丁多)
	Scot 3 on Ashgrave
	AL 3 Time
	B14 3
Extra work or delays (authorized by)	
	Sian
	Civil

6801 NW Old Lower River Road Vancouver, WA 98660 (360) 695-4553 (503) 284-1140

						•	
	Λ	T	W	ΤH	A	S	S
Date		//	2//	22			

	Job Name Ashgrave Com	ENT	Date 7/13/07
	Job No	_Weather	•
	Equipment: Q Sea Hawk Sea Vu		Wiking 1966 Loader Chetco
CRANEWORK & DREDGING			
	-		□Barge 47 □ Barge Harvey A
	□Manlift □ Other		
Equipment Safety Checks I	Performed? (es)/ No		
	nent Safety Checks Performed ? Yes/		
Work performed today o	100-STANT UP-SET A	nehors & Be	en averal Dreamer
			y repaint there gas
line co	resing at D.S end q	of Dedge a	ven - He was most some
	& activities As long		
HE DED SAY	that Oregon steel has	A Crossi	is the area & wow ID co
Thein -			
0830- Oregon	STEEL CALLED & I will	MECT W/	him at 0845 4 Determine The
Cross ing	where ABOUTS . (No Prot	Blem - Line c	rosses at NUS, end of their
	most here - went to	0	are -
1100 -B:114 Al help	ing w/ curtain - Doug	+ Dos	
200-1230 lunch			· · · · · · · · · · · · · · · · · · ·
1230 - Making R	nal connection on Be	20M	
1320 - Begin D.	gging - ADj-Andlers	as needed	
6-30-Dave Digg	ing grase 9 secure.	Dag From	US STOP of CUT TO
	yor - 40't - To grape		
1700 -Done			
		eg 91/2	
	<u>#1</u>		
	Do		
	(A-A-1)	M8	
Extra work or delays (author	prized by) 33 / 10 34	<u> </u>	
	1 10		
	100		
	- I we hill		
	3.71 VA 3.6		
	Sign	_	

6801 NW Old Lower River Road Vancouver, WA 98660 (360) 695-4553 (503) 284-1140

424	_		+		-	
I MI		· w	пн	ı - ı	5	\sim \sim
L_{X}						

	Job Name Ash wrove	Date 7/16/07
	Job NoWeat	ther
		Sea Lion ☐Viking ☐966 Loader ☐Chetco
—————————————————————————————————————		K5 □Nova □Barge 47 □ Barge Harvey A
	•	•
	□Manlift □ Other	
Equipment Safety Checks		
Personal Protective Equipr	nent Safety Checks Performed 7 Yes) No	
Work performed today	700-STATE UP - reset &	som (Tribstity)
Des Pigging		
1200-1250 lunel	1-12 grade at Angle	loi47
1245 - 1.99ing	Hole 20 B K +	Point
750-1000 - 7	THIS OFF BUCKE!	
500-240012		
	and the second s	
•		
Extra work or delays (author	orized by)	
		loaded prasts at 14:
0830 dest	<u>/</u>	11.0 11.5
10:30		109 11.4
12:20		
2330		
	Sign	

6801 NW Old Lower River Road Vancouver, WA 98660

(360) 695-4553 (503) 284-1140 WTHFSS 1

	Job Name Ashgroce	Date
A = A = A	Job NoWeather	er
	Equipment: Sea Hawk Sea Vulture S	
CRANEWORK & DREDGING		5 □Nova □Barge 47 □ Barge Harvey A
A Control Observation	□ Manlift □ Other	
quipment Safety Checks	ment Safety Checks Performed (Yes) No	
	200-17HAT UP - Breek Ba	9171 —
	en site-cheteo To Va	
855 - Las Dia	3 Boom	
30 Break	<i>d</i>	
45 Cold	300-	
30 mom 7	o yard - MAV	
10 Cmal	- spotted years -	
- taint		
30 Secure		
, a		
		,
	·	
		1 to
extra work or delays (auth	norized by)	1
	Sign	

CIENT

11954 NE Glisan Portland, OR 97220 www.enbusol.com ebsolutions1@uswest.net

July 25, 2001

John Hone Ash Grove Cement Company Portland, Oregon

Re: Hydraulic Oil Clean-up status report

Dear John:

On July 11, 2001, Environmental Business Solutions (EBS) performed excavation services at the south -end of your railcar unloading silo. The scope of this project was to make a preliminary evaluation of the extent of petroleum contamination that was caused by leaking, hydraulically operated, railcar moving, power units without causing too much disturbance to the railroad track substructure, and to remove and dispose of any contaminated soil encountered.

The excavation consisted of removing contaminated soil from a volume of approximately 10 feet from the sump along the north railroad track, 8 feet wide measured perpendicular from the railroad tracks and 6 feet deep. The excavation depth was determined pursuant to your direction. This amounted to removing approximately ten cubic yards of contaminated soil. At the completion of the excavation, two samples were obtained from the excavation pit: one from the sidewall under the railroad tracks and one from the pit floor.

The results are as follows:

	Diesel	Heavy Oil	During the excavation, visually and
Pit Floor	1900ppm	6400ppm	olfactorily contamination did not appear to be present at the bottom
Sidewall under railroad tracks	5400ppm	28,000ppm	of the excavation pit. However, the analytical results (attached) indicate

that there still remains a low level of petroleum hydrocarbon in the pit floor and higher levels under the tracks. From a visual inspection of the sidewall of the pit under the railroad tracks, the contamination can be seen.

CONCLUSION

Before evaluating the project data and discussing cleanup requirements, several site characteristics should be mentioned.

The release is located approximately 250 feet to the north of the Willamette River and grade is approximately 30 feet above the river surface level. The site is located in a flood plain with the Union Pacific Railroad switching yard located approximately 50 feet directly to the east of the excavation site. The history of the activities occurring at the Ash Grove facility and the Union Pacific Railroad yard are unknown to EBS, however, widespread subsurface petroleum contamination is not uncommon with a rail facility. The water table at the excavation site has not been determined.

Page 2
 July 25, 2001

The analytical results from and visual inspection of the pit sidewall under the railroad tracks indicated that petroleum contamination is fairly substantial under the railroad tracks and may extend to the opposite side of the railroad tracks. The distance the contamination has migrated toward the river is unknown but may be further than on the excavated side due to gradient toward the river.

The analytical results from the pit bottom indicate that low-level petroleum contamination remains at that depth. However, this does not necessarily indicate that the contamination was a result of the leaking car moving equipment but could exist at these levels throughout the entire floodplain area because of another offsite source. No samples were obtained and analyzed to prove or disprove this hypothesis. However, as mentioned above, the railroad yard, which includes a diesel fueling facility and a great deal of rail activities, could have caused petroleum spillage and may be up gradient from the Ash Grove facility.

Regarding spill clean-up requirements, the Oregon administrative rules (OAR) require that in the event of a release of a hazardous substance, such as hydraulic fluids, cleanup shall be implemented to achieve protection of human health and the environment, and prevent migration of hazardous substances in the environment. It is EBS' understanding that two factors may support a continued investigation and contaminated soil excavation.

First, because of a possible shallow ground water condition and close proximity to the Willamette River, the extent and contamination concentration should be determined. Secondly, the contamination could pose a human threat relative to the possibility of worker exposure to diesel oil, which contains benzene, while trenching or vapors entering confined spaces such as the adjacent basement area.

There are two remedies to ensure compliance. It is acceptable to leave a pocket of contamination in place, but to do this, it is required to perform a risk-based assessment which takes into account the concentration of hazardous substance, the volume of contaminated media, and exposure routes to human health and the environment. This will require determining all hazardous substance characteristics (i.e., petroleum concentrations, heavy metals, volatiles, etc.) through soil sampling and testing and the exact extent of the pocket. The other option is to completely remove all sources of contamination. This would require of course, some excavation under the railroad tracks.

Please keep in mind the concern about the historical activities in the area and the adjacent railroad yard. If there is background contamination throughout the floodplain area we may not be able to achieve the absence of petroleum contamination. One recommendation to better understand the extent of contamination prior to proceeding with the new construction of the building and causing any delays at that time will be to drill through the concrete area to the south of the railroad tracks near the south side sump and make subsurface probes to try and determine the extent of the heavier contamination. It would also be productive to analyze a background sample to evaluate widespread petroleum presence.

I hope our efforts have provided some initial insight.

Sincerely.

Arthur Marx Senior Environmental Engineer